Transformation of Linear Alkenyl N-Alkoxy Carbamates into Cyclic Bromo Carbonates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathyamoorthi, S. Fun With Unusual Functional Groups: Sulfamates, Phosphoramidates, and Di-tert-butyl Silanols. Eur. J. Org. Chem. 2024, 27, e202301283. [Google Scholar] [CrossRef] [PubMed]
- Sathyamoorthi, S.; Kelley, S.P. A study of alkene disulfonoxylation. Med. Chem. Res. 2024, 33, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.; Manna, A.; Nagamalla, S.; Thomas, A.A.; Sathyamoorthi, S. A Catalytic, Enantioselective Sulfamate Tethered Aza-Michael Cyclization. Org. Lett. 2024, 26, 10708–10713. [Google Scholar] [CrossRef]
- Joshi, H.; Nirpal, A.K.; Paul, D.; Kelley, S.P.; Mague, J.T.; Sathyamoorthi, S. The Development of a Sulfamate-Tethered Aza-Michael Cyclization Allows for the Preparation of (−)-Negamycin tert-Butyl Ester. J. Org. Chem. 2024, 89, 5911–5916. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Troyano, F.J.; Merkens, K.; Gómez-Suárez, A. Selectfluor® Radical Dication (TEDA2+●)—A Versatile Species in Modern Synthetic Organic Chemistry. Asian J. Org. Chem. 2020, 9, 992–1007. [Google Scholar] [CrossRef]
- Banks, R.E.; Mohialdin-Khaffaf, S.N.; Lal, G.S.; Sharif, I.; Syvret, R.G. 1-Alkyl-4-fluoro-1,4-diazoniabicyclo [2.2.2]octane salts: A novel family of electrophilic fluorinating agents. J. Chem. Soc. Chem. Commun. 1992, 595–596. [Google Scholar] [CrossRef]
- Nyffeler, P.T.; Durón, S.G.; Burkart, M.D.; Vincent, S.P.; Wong, C.-H. Selectfluor: Mechanistic Insight and Applications. Angew. Chem. Int. Ed. 2005, 44, 192–212. [Google Scholar] [CrossRef]
- Michaudel, Q.; Thevenet, D.; Baran, P.S. Intermolecular Ritter-Type C–H Amination of Unactivated sp3 Carbons. J. Am. Chem. Soc. 2012, 134, 2547–2550. [Google Scholar] [CrossRef]
- Joshi, H.; Paul, D.; Sathyamoorthi, S. Oxidations of Alcohols, Aldehydes, and Diols Using NaBr and Selectfluor. J. Org. Chem. 2023, 88, 11240–11252. [Google Scholar] [CrossRef]
- Wardrop, D.J.; Bowen, E.G. Synthetic Applications of Nitrenium Ions. In Nitrenes and Nitrenium Ions; Wiley-Interscience: Hoboken, NJ, USA, 2013; pp. 347–449. [Google Scholar]
- Silver, R.; Nirpal, A.K.; Sathyamoorthi, S. Taming Tethered Nitreniums for Alkene Functionalization Reactions. J. Org. Chem. 2024, 89, 15352–15357. [Google Scholar] [CrossRef]
- Hunt, P.A.; May, C.; Moody, C.J. Iodocyclisations of allyl-amidines and -ureas. Tetrahedron Lett. 1988, 29, 3001–3002. [Google Scholar] [CrossRef]
- Cardillo, G.; Orena, M. Stereocontrolled cyclo-functionalizations of double bonds through heterocyclic intermediates. Tetrahedron 1990, 46, 3321–3408. [Google Scholar] [CrossRef]
- Li, H.; Widenhoefer, R.A. Intramolecular di-amination and alkoxyamination of alkenes with N-sulfonyl ureas employing N-iodosuccinimide. Tetrahedron 2010, 66, 4827–4831. [Google Scholar] [CrossRef]
- Al Shuhaib, Z.; Davies, D.H.; Dennis, M.; Evans, D.M.; Fletcher, M.D.; Franken, H.; Hancock, P.; Hollinshead, J.; Jones, I.; Kähm, K.; et al. Iodocyclisations reactions of Boc- and Cbz-protected N-allylguanidines. Tetrahedron 2014, 70, 4412–4419. [Google Scholar] [CrossRef]
- Davies, D.; Fletcher, M.D.; Franken, H.; Hollinshead, J.; Kähm, K.; Murphy, P.J.; Nash, R.; Potter, D.M. Iodocyclisation and rearrangement reactions of mono-protected allyl substituted guanidines. Tetrahedron Lett. 2010, 51, 6825–6829. [Google Scholar] [CrossRef]
- Yang, H.; Fan, G.-T.; Zhou, L.; Chen, J. Enantioselective Chloro-O-cyclization of Unsaturated N-Tosylcarbamates. Adv. Synth. Catal. 2017, 359, 1295–1300. [Google Scholar] [CrossRef]
- Peilleron, L.; Retailleau, P.; Cariou, K. Synthesis of Cyclic N-Hydroxylated Ureas and Oxazolidinone Oximes Enabled by Chemoselective Iodine(III)-Mediated Radical or Cationic Cyclizations of Unsaturated N-Alkoxyureas. Adv. Synth. Catal. 2019, 361, 5160–5169. [Google Scholar] [CrossRef]
- Bartlett, P.A.; Meadows, J.D.; Brown, E.G.; Morimoto, A.; Jernstedt, K.K. Carbonate extension. A versatile procedure for functionalization of acyclic homoallylic alcohols with moderate stereocontrol. J. Org. Chem. 1982, 47, 4013–4018. [Google Scholar] [CrossRef]
- Bongini, A.; Cardillo, G.; Orena, M.; Sandri, S.; Tomasini, C. Factors affecting the regioselection of allylic imidate iodocyclization. J. Org. Chem. 1986, 51, 4905–4910. [Google Scholar] [CrossRef]
- Bongini, A.; Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. Regio- and stereocontrolled synthesis of epoxy alcohols and triols from allylic and homoallylic alcohols via iodocarbonates. J. Org. Chem. 1982, 47, 4626–4633. [Google Scholar] [CrossRef]
- Garzan, A.; Jaganathan, A.; Salehi Marzijarani, N.; Yousefi, R.; Whitehead, D.C.; Jackson, J.E.; Borhan, B. Solvent-Dependent Enantiodivergence in the Chlorocyclization of Unsaturated Carbamates. Chem. Eur. J. 2013, 19, 9015–9021. [Google Scholar] [CrossRef]
- Haslanger, M.F.; Ahmed, S. Synthesis of 7-hydroxybicyclo[3.3.0]oct-8-en-2-one derivatives and use of carbonate participation for stereospecific epoxidation. J. Org. Chem. 1981, 46, 4808–4810. [Google Scholar] [CrossRef]
- Knapp, S.; Patel, D.V. Bromocyclization of unsaturated thiocarbamidates. Synthesis of (.+−.)−sporamine. J. Am. Chem. Soc. 1983, 105, 6985–6986. [Google Scholar] [CrossRef]
- China, H.; Kumar, R.; Kikushima, K.; Dohi, T. Halogen-Induced Controllable Cyclizations as Diverse Heterocycle Synthetic Strategy. Molecules 2020, 25, 6007. [Google Scholar] [CrossRef]
- Matsushima, Y.; Kino, J. A versatile route to 2,4,6-trideoxy-4-aminohexoses: Stereoselective syntheses of d-vicenisamine and its epimers via iodocyclization of carbamate. Tetrahedron 2017, 73, 6831–6839. [Google Scholar] [CrossRef]
- Hirama, M.; Uei, M. Carbamate mediated 1,3-asymmetric induction. A stereoselective synthesis of acyclic 1,3-diol systems. Tetrahedron Lett. 1982, 23, 5307–5310. [Google Scholar] [CrossRef]
- Kitagawa, O.; Fujita, M.; Li, H.; Taguchi, T. Regio-controlled iodoaminocyclization reaction of an ambident nucleophile mediated by LiAl(Ot-Bu)4. Tetrahedron Lett. 1997, 38, 615–618. [Google Scholar] [CrossRef]
- Yi, W.; Fang, X.-X.; Liu, Q.-Y.; Liu, G.-Q. Metal-Free Synthesis of Oxazolidine-2,4-diones and 3,3-Disubstituted Oxindoles via ICl-Induced Cyclization. Eur. J. Org. Chem. 2018, 2018, 6671–6681. [Google Scholar] [CrossRef]
- Fujita, M.; Kitagawa, O.; Suzuki, T.; Taguchi, T. Regiocontrolled Iodoaminocyclization Reaction of an Ambident Nucleophile Mediated by Basic Metallic Reagent. J. Org. Chem. 1997, 62, 7330–7335. [Google Scholar] [CrossRef]
- Giofrè, S.; Sala, R.; Beccalli, E.M.; Presti, L.L.; Broggini, G. Iodoamination of Alkenyl Sulfonamides by Potassium Iodide and Hydrogen Peroxide in Aqueous Medium. Helv. Chim. Acta 2019, 102, e1900088. [Google Scholar] [CrossRef]
- Konradsson, P.; Mootoo, D.R.; McDevitt, R.E.; Fraser-Reid, B. Iodonium ion generated in situ from N-iodosuccinimide and trifluoromethanesulphonic acid promotes direct linkage of ‘disarmed’ pent-4-enyl glycosides. J. Chem. Soc. Chem. Commun. 1990, 270–272. [Google Scholar] [CrossRef]
- Martelli, G.; Orena, M.; Rinaldi, S.; Sabatino, P. Diastereoselective functionalisation of Baylis–Hillman adducts: A convenient approach to α-methyl-α-amino acids. Amino Acids 2010, 39, 489–497. [Google Scholar] [CrossRef]
- Martin, S.F.; Zinke, P.W. The furan approach to oxygenated natural products. Total synthesis of (+)−KDO. J. Org. Chem. 1991, 56, 6600–6606. [Google Scholar] [CrossRef]
- Pauls, H.W.; Fraser-Reid, B. A novel synthesis of methyl .alpha.-L-garosaminide which illustrates a stereocontrolled approach to the cis-hydroxyamino moiety of amino sugars. J. Am. Chem. Soc. 1980, 102, 3956–3957. [Google Scholar] [CrossRef]
- Takeda, Y.; Okumura, S.; Tone, S.; Sasaki, I.; Minakata, S. Cyclizative Atmospheric CO2 Fixation by Unsaturated Amines with t-BuOI Leading to Cyclic Carbamates. Org. Lett. 2012, 14, 4874–4877. [Google Scholar] [CrossRef]
- Mizar, P.; Wirth, T. Iodoaminations of Alkenes. Synthesis 2017, 49, 981–986. [Google Scholar]
- Overman, L.E.; McCready, R.J. Carbonyl participation in the reaction of N-acyl-2-isopropenylpyrrolidines with halogen electrophiles. Stereocontrolled preparation of enantiomerically pure synthons for the synthesis of pumiliotoxin A alkaloids. Tetrahedron Lett. 1982, 23, 4887–4890. [Google Scholar] [CrossRef]
- Kočovský, P.; Stieborová, I. Participation of ambident neighbouring groups in hypobromous acid addition to some steroidal olefins. Competition of electronic and stereoelectronic effects. J. Chem. Soc. Perkin Trans. 1 1987, 1969–1974. [Google Scholar] [CrossRef]
- Chen, K.; Baran, P.S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 2009, 459, 824–828. [Google Scholar] [CrossRef]
- Fan, G.-T.; Sun, M.-H.; Gao, G.; Chen, J.; Zhou, L. Regioselective Bromocyclization of Unsaturated N-Tosylcarbamates Promoted by N,N-Dibromosulfonamides. Synlett 2014, 25, 1921–1925. [Google Scholar]
- Huang, D.; Liu, X.; Li, L.; Cai, Y.; Liu, W.; Shi, Y. Enantioselective Bromoaminocyclization of Allyl N-Tosylcarbamates Catalyzed by a Chiral Phosphine–Sc(OTf)3 Complex. J. Am. Chem. Soc. 2013, 135, 8101–8104. [Google Scholar] [CrossRef]
- Knapp, S.; Sebastian, M.J.; Ramanathan, H. Total synthesis of (.+−.)-fortamine and (.+−.)-2-deoxyfortamine. J. Org. Chem. 1983, 48, 4786–4788. [Google Scholar] [CrossRef]
- Liu, W.; Pan, H.; Tian, H.; Shi, Y. Enantioselective 6-exo-Bromoaminocyclization of Homoallylic N-Tosylcarbamates Catalyzed by a Novel Monophosphine-Sc(OTf)3 Complex. Org. Lett. 2015, 17, 3956–3959. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Huang, H.; Liu, W.; Tian, H.; Shi, Y. Phosphine Oxide–Sc(OTf)3 Catalyzed Highly Regio- and Enantioselective Bromoaminocyclization of (E)-Cinnamyl Tosylcarbamates. An Approach to a Class of Synthetically Versatile Functionalized Molecules. Org. Lett. 2016, 18, 896–899. [Google Scholar] [CrossRef]
- Parker, K.A.; O’Fee, R. Halonium-initiated cyclizations of allylic urethanes: Stereo- and regioselectivity in functionalizing the olefinic bond. J. Am. Chem. Soc. 1983, 105, 654–655. [Google Scholar] [CrossRef]
- Shen, K.; Wang, Q. Copper-Catalyzed Alkene Aminoazidation as a Rapid Entry to 1,2-Diamines and Installation of an Azide Reporter onto Azahetereocycles. J. Am. Chem. Soc. 2017, 139, 13110–13116. [Google Scholar] [CrossRef]
- DeCicco, E.M.; Tlapale-Lara, N.; Paradine, S.M. Incorporating azaheterocycle functionality in intramolecular aerobic, copper-catalyzed aminooxygenation of alkenes. RSC Adv. 2024, 14, 28822–28826. [Google Scholar] [CrossRef]
- McNichol, C.P.; DeCicco, E.M.; Canfield, A.M.; Carstairs, D.P.; Paradine, S.M. Copper-Catalyzed Aerobic Aminooxygenation of Cinnamyl N-Alkoxycarbamates via Substrate-Promoted Catalyst Activation. ACS Catal. 2023, 13, 6568–6573. [Google Scholar] [CrossRef]
- Virgil, S.C.; Jenkins, P.R.; Wilson, A.J.; García Romero, M.D. N-Bromosuccinimide. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Brown, R.S.; Nagorski, R.W.; Bennet, A.J.; McClung, R.E.D.; Aarts, G.H.M.; Klobukowski, M.; McDonald, R.; Santarsiero, B.D. Stable Bromonium and Iodonium Ions of the Hindered Olefins Adamantylidene-adamantane and Bicyclo[3.3.1]nonylidenebicyclo[3.3.1]nonane. X-Ray Structure, Transfer of Positive Halogens to Acceptor Olefins, and ab Initio Studies. J. Am. Chem. Soc. 1994, 116, 2448–2456. [Google Scholar] [CrossRef]
- Sathyamoorthi, S.; Nirpal, A.; Gorve, D.; Silver, R.; Kelley, S. Tethered Aza-Wacker Cyclization Reactions with Unusual N-Alkoxy Carbamates. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Sathyamoorthi, S.; Nirpal, A.; Gorve, D.; Kelley, S. Harnessing tethered nitreniums for diastereoselective amino-sulfonoxylation of alkenes. Beilstein J. Org. Chem. 2025, 21, 947–954. [Google Scholar] [CrossRef]
Br+ Source a | Additive a | Solvent b | Yield c | |
---|---|---|---|---|
1 | DBI (1) d | None | CH3CN | 57% |
2 | NBSacc (1.5) e | None | CH3CN | 53% |
3 | DBH (1.5) f | None | CH3CN | 55% |
4 | NBS (1.5) g | None | CH2Cl2 | 20% |
5 | NBS (1.5) | None | CH3CN | 22% |
6 | NBS (1.5) | H2O (2) | CH3CN | 72% |
7 | NBS (1.5) | H2O (55) | CH3CN | 60% |
8 | NBS h (1.5) | H2O (2) | CH3CN | 70% |
9 | NBS h (2) | H2O (2) | CH3CN | 75% |
Substrate | Product | Isolated Yield a | |||
---|---|---|---|---|---|
1 | (#12, #13) b | 52% c dr > 20:1 | |||
2 | Ar = Ph pCF3OC6H4 mCF3C6H4 pFC6H4 pClC6H4 [X-ray]pBrC6H4 pBpinC6H4 1-nap | (#14, #15) (#16, #17) (#18, #19) (#20, #21) (#22, #23) (#24, #25) (#26, #27) (#28, #29) | 75% 81% 72% 74% 75% 74% 58% 62% | ||
3 | (#30, #31) | 51% | |||
4 | (#32, #33) | 83% dr = 3:1 | |||
5 | R = C2H4OBn i-Pr H | (#34, #35) (#36, #37) (#38, #39) | 57% 69% 53% | ||
6 | (#40, #41) | 46% | |||
7 | X = NBoc CH2 | (#42, #43) (#44, #45) | 62% 65% | ||
8 | (#46, #47) | 70% | |||
9 | (#48, #49) | 57% | |||
10 | (#50, #51) | 55% c dr > 20:1 | |||
11 | (#52, #53) | 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathyamoorthi, S.; Kelley, S.P. Transformation of Linear Alkenyl N-Alkoxy Carbamates into Cyclic Bromo Carbonates. Chemistry 2025, 7, 99. https://doi.org/10.3390/chemistry7030099
Sathyamoorthi S, Kelley SP. Transformation of Linear Alkenyl N-Alkoxy Carbamates into Cyclic Bromo Carbonates. Chemistry. 2025; 7(3):99. https://doi.org/10.3390/chemistry7030099
Chicago/Turabian StyleSathyamoorthi, Shyam, and Steven P. Kelley. 2025. "Transformation of Linear Alkenyl N-Alkoxy Carbamates into Cyclic Bromo Carbonates" Chemistry 7, no. 3: 99. https://doi.org/10.3390/chemistry7030099
APA StyleSathyamoorthi, S., & Kelley, S. P. (2025). Transformation of Linear Alkenyl N-Alkoxy Carbamates into Cyclic Bromo Carbonates. Chemistry, 7(3), 99. https://doi.org/10.3390/chemistry7030099