Metal-Free C(sp3)–S Bond Cleavage of Thioethers to Selectively Access Aryl Aldehydes and Dithioacetals
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Optimization of the Reaction Conditions for Benzaldehyde 2a
3.3. Synthetic Procedures for the Synthesis of Products 2
3.4. Synthetic Procedures for the Synthesis of Products 4
3.5. Optimization of the Reaction Conditions for (Phenylmethylene)bis(phenylsulfane) (5a)
3.6. Synthetic Procedures for the Synthesis of Products 5
3.7. Synthetic Procedures for the Synthesis of (Phenylmethylene)bis(phenylsulfane) (5a), Benzaldehyde (2a), 1,2-Diphenyldisulfane (6) and S-Phenyl Benzothioate (7)
3.8. Synthetic Procedures for Gram-Scale Reactions
3.9. Control Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCS | N-Chlorosuccinimide |
NCP | N-Chlorophthalimide |
DCDMH | 1,3-Dichloro-5,5-dimethylhydantoin |
NBS | N-Bromosuccinimide |
NIS | N-Iodosuccinimide |
Selectfluor | 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) |
NFSI | N-Fluorobenzenesulfonamide |
DCM | Dichloromethane |
DCE | 1,2-Dichloroethane |
DMSO | Dimethyl sulfoxide |
DMF | N,N-Dimethylformamide |
References
- Kuzmin, J.; Rockl, J.; Schwarz, N.; Djossou, J.; Ahumada, G.; Ahlquist, M.; Lundberg, H. Electroreductive desulfurative transformations with thioethers as alkyl radical precursors. Angew. Chem. Int. Ed. 2023, 62, e202304272. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Hu, Q.; Yang, K.; Elsaid, M.; Liu, C.; Ge, H. Recent advances in direct α-C(sp3)–H bond functionalization of thioethers. Green Synth. Catal. 2022, 3, 203–211. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Li, Z.; Tang, L.; Sun, X.; Yang, K. Transition-metal-catalyzed remote C–H functionalization of thioethers. RSC Adv. 2022, 12, 10835–10845. [Google Scholar] [CrossRef] [PubMed]
- Addison, N.D.; Jeenifer, A.L. Recent advances in well-defined, late transition metal complexes that make and/or break C–N, C–O and C–S bonds. Chem. Soc. Rev. 2017, 46, 197–238. [Google Scholar]
- David, C. Homolytic substitution at the sulfur atom as a tool for organic synthesis. Helv. Chim. Acta 2006, 89, 2167–2182. [Google Scholar]
- O’Mahony, G.E.; Ford, A.; Maguire, A.R. Asymmetric oxidation of sulfides. J. Sulfur Chem. 2013, 34, 301–341. [Google Scholar] [CrossRef]
- Wang, N.; Puli, S.; Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 2020, 37, 246–275. [Google Scholar] [CrossRef]
- Sachdeva, H.; Khaturia, S.; Saquib, M.; Khatik, N.; Khandelwal, A.R.; Meena, R.; Sharma, K. Oxygen- and sulphur-containing heterocyclic compounds as potential anticancer agents. Appl. Biochem. Biotech. 2022, 194, 6438–6467. [Google Scholar] [CrossRef]
- Guo, W.; Wang, D.; Chen, Q.; Fu, Y. Advances of organosulfur materials for rechargeable metal batteries. Adv. Sci. 2022, 9, 2103989. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Jiang, X. Sulfur-center-involved photocatalyzed reactions. Chem. Asian J. 2018, 13, 2208–2242. [Google Scholar] [CrossRef]
- Cinar, M.E.; Ozturk, T. Thienothiophenes, dithienothiophenes, and thienoacenes: Syntheses, oligomers, polymers, and properties. Chem. Rev. 2015, 115, 3036–3140. [Google Scholar] [CrossRef] [PubMed]
- Yorimitsu, H. Catalytic transformations of sulfonium salts via C–S Bond activation. Chem. Rec. 2021, 21, 3356–3369. [Google Scholar] [CrossRef]
- Huang, S.; Wang, M.; Jiang, X. Ni-catalyzed C–S bond construction and cleavage. Chem. Soc. Rev. 2022, 51, 8351–8377. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Wang, Q.; Wu, P.; Wang, H.; Zhou, Y.; Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations: An update. Chem. Soc. Rev. 2020, 49, 4307–4359. [Google Scholar] [CrossRef]
- Pan, F.; Shi, Z. Recent advances in transition-metal-catalyzed C–S activation: From thioester to (hetero)aryl thioether. ACS Catal. 2014, 4, 280–288. [Google Scholar] [CrossRef]
- Modha, S.G.; Mehta, V.P.; Eycken, E.V.V. Transition metal-catalyzed C–C bond formation via C–S bond cleavage: An overview. Chem. Soc. Rev. 2013, 42, 5042–5055. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, W.; Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621. [Google Scholar] [CrossRef]
- Yang, K.; Li, Q.; Li, Z.; Sun, X. Transition-metal-free C–S bond cleavage and transformation of organosulfur compounds. Chem. Commun. 2023, 59, 5343–5364. [Google Scholar] [CrossRef]
- Fan, R.; Tan, C.; Liu, Y.; Wei, Y.; Zhao, X.; Liu, X.; Tan, J.; Yoshida, H. A leap forward in sulfonium salt and sulfur ylide chemistry. Chin. Chem. Lett. 2021, 32, 299–312. [Google Scholar] [CrossRef]
- Yang, K.; Song, M.; Ali, A.I.M.; Mudassir, S.M.; Ge, H. Recent advances in the application of Selectfluor as a “fluorine-free” functional reagent in organic synthesis. Chem. Asian J. 2020, 15, 729–741. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, Z.; Alhumade, H.; Huang, Z.; Lei, A. Electrochemical radical-mediated selective C(sp3)–S bond activation. Chem. Sci. 2023, 14, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Canestrari, D.; Lancianesi, S.; Badiola, E.; Strinna, C.; Ibrahim, H.; Adamo, M.F.A. Desulfurative chlorination of alkyl phenyl sulfides. Org. Lett. 2017, 19, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Hugenberg, V.; Haufe, G. Fluoro-Pummerer rearrangement and analogous reactions. J. Fluorine Chem. 2012, 143, 238–262. [Google Scholar] [CrossRef]
- Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Bond-forming and -breaking reactions at sulfur(IV): Sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 2019, 119, 8701–8780. [Google Scholar] [CrossRef]
- Li, M.; Gu, A.; Li, J.; Liu, Y. Advanced green synthesis: Solvent-free and catalyst-free reaction. Green Synth. Catal. 2025, 6, 36–66. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Wang, Q.; Wang, L. Photochemical-, electrochemical-, and photoelectrochemical-catalyzed hydrogen atom transfer from aldehydes to acyl radicals and their transformations. Eur. J. Org. Chem. 2025, 28, e202401206. [Google Scholar] [CrossRef]
- Kim, H.; Walsh, P.J. Efficient approaches to the stereoselective synthesis of cyclopropyl alcohols. Acc. Chem. Res. 2012, 45, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- Parenty, A.; Moreau, X.; Campagne, J.M. Macrolactonizations in the total synthesis of natural products. Chem. Rev. 2006, 106, 911–939. [Google Scholar] [CrossRef]
- Burghardt, T.E. Developments in the deprotection of thioacetals. J. Sulfur Chem. 2005, 26, 411–427. [Google Scholar] [CrossRef]
- Wei, C.; Zhao, L.; Sun, Z.; Hu, D.; Song, B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pestic. Biochem. Physiol. 2020, 166, 104568. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; He, F.; Gan, X.; Song, B.; Hu, D. Design, synthesis, bioactivity and mechanism of dithioacetal derivatives containing dioxyether moiety. Bioorganic Med. Chem. Lett. 2019, 29, 2218–2223. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; He, W. Recent advances in the photocatalytic synthesis of aldehydes. Org. Chem. Front. 2023, 10, 4198–4210. [Google Scholar] [CrossRef]
- Roman, B.I.; Kimpe, N.D.; Stevens, C.V. Synthesis of β-, γ-, δ-, …, ω-halogenated ketones and aldehydes. Chem. Rev. 2010, 110, 5914–5988. [Google Scholar] [CrossRef] [PubMed]
- Roy, B. Recent developments in the greener approaches for the dithioacetalization of carbonyl compounds. J. Sulfur Chem. 2023, 44, 779–813. [Google Scholar] [CrossRef]
- Ryohei, O.; Hayashi, Y. Mechanism of the oxidation of α-active-methylene sulfides by dimethyl sulfoxide and benzoyl chloride. Tetrahedron Lett. 1967, 32, 3141. [Google Scholar]
- Bakuzis, P.; Bakuzis, M.L.F.; Fortes, C.C.; Santos, R. The sulfide group as an aldehyde precursor. J. Org. Chem. 1976, 41, 2769–2770. [Google Scholar] [CrossRef]
- Luo, Y.; Yuan, D.; Li, Q.; Zhou, F.; Xu, Z.; Sun, X.; Tang, L.; Yang, K. Metal-free and NBS-mediated C(sp3)–S bond cleavage of thioethers to access alkyl bromides. ChemistrySelect 2024, 9, e202401194. [Google Scholar] [CrossRef]
- Yang, K.; Luo, Y.; Hu, Q.; Song, M.; Li, Z.; Li, B.; Sun, X. Selective C(sp3)–S bond cleavage of thioethers to build up unsymmetrical disulfides. J. Org. Chem. 2023, 88, 13699–13711. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Q.; Zhang, F.; Li, Z.; Sun, X.; Yang, K. Metal-free selective C–S bond cleavage of thioethers to access β-alkoxy carbonyl compounds. ChemistrySelect 2021, 6, 6268–6271. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Ma, Z.; Tang, L.; Yue, Y.; Zhang, H.; Li, Z.; Sun, X. Metal-free C–S bond cleavage to access N-substituted acrylamide and β-aminopropanamide. Eur. J. Org. Chem. 2019, 2019, 5812–5814. [Google Scholar] [CrossRef]
- Murphy, M.; Lynch, D.; Schaeffer, M.; Kissane, M.; Chopra, J.; O’Brien, E.; Ford, A.; Fergusonb, G.; Maguire, A.R. Investigation of the synthetic and mechanistic aspects of the highly stereoselective transformation of α-thioamides to α-thio-β-chloroacrylamides. Org. Biomol. Chem. 2007, 5, 1228–1241. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.A.; Doecke, C.W.; Buser, J.Y.; Merritt, J.M.; Murphy, L.; Kissane, M.; Collins, S.G.; Maguire, A.R.; Kaerner, A. ReactNMR and reactIR as reaction monitoring and mechanistic elucidation tools: The NCS mediated cascade reaction of α-thioamides to α-thio-β-chloroacrylamides. J. Org. Chem. 2011, 76, 9630–9640. [Google Scholar] [CrossRef]
- Nimbhal, A.; Singh, R. N-Chlorosuccinimide: A versatile reagent in organic synthesis. Curr. Org. Chem. 2024, 29, 936–950. [Google Scholar] [CrossRef]
- Chauhan, P. N-Chlorosuccinimide (NCS). Synlett 2010, 8, 1285–1286. [Google Scholar] [CrossRef]
- Golebiewski, W.M.; Miroslaw, G. Applications of N-chlorosuccinimide in organic synthesis. Synthesis 2007, 23, 3599–3619. [Google Scholar] [CrossRef]
- Abraham, R.J.; Mobli, M.; Smith, R.J. 1H chemical shifts in NMR: Part 19. carbonyl anisotropies and steric effects in aromatic aldehydes and ketones. Magn. Reson. Chem. 2003, 41, 26–36. [Google Scholar] [CrossRef]
- Li, Y.; Mao, F.; Chen, T.; Zhou, Z.; Wang, Y.; Huang, J. In situ trapped and immobilized palladium nanoparticles as active and clean catalysts for Suzuki-Miyaura reaction. Adv. Synth. Catal. 2015, 357, 2827–2832. [Google Scholar] [CrossRef]
- Hong, B.; Tseng, H.; Chen, S. Synthesis of aromatic aldehydes by organocatalytic [4+2] and [3+3] cycloaddition of α,β-unsaturated aldehydes. Tetrahedron 2007, 63, 2840–2850. [Google Scholar] [CrossRef]
- Terstiege, I.; Maleczka, R.E. A new approach for the generation and reaction of organotin hydrides: The development of reactions catalytic in Tin. J. Org. Chem. 1999, 64, 342–343. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Q. Aldehydes and ketones formation: Copper-catalyzed aerobic oxidative decarboxylation of phenylacetic acids and α-hydroxyphenylacetic acids. J. Org. Chem. 2014, 79, 1867–1871. [Google Scholar] [CrossRef]
- Iinuma, M.; Moriyama, K.; Togo, H. Various oxidative reactions with novel ion-supported (diacetoxyiodo)benzenes. Tetrahedron 2013, 69, 2961–2970. [Google Scholar] [CrossRef]
- Hu, P.; Tan, M.; Cheng, L.; Zhao, H.; Feng, R.; Gu, W.; Han, W. Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes. Nat. Commun. 2019, 10, 2425. [Google Scholar] [CrossRef]
- Zhao, Y.; Snieckus, V. A practical in situ generation of the Schwartz reagent. Reduction of tertiary amides to aldehydes and hydrozirconation. Org. Lett. 2014, 16, 390–393. [Google Scholar] [CrossRef]
- Imai, S.; Togo, H. Synthetic utility of iodic acid in the oxidation of benzylic alcohols to aromatic aldehydes and ketones. Tetrahedron 2016, 72, 6948–6954. [Google Scholar] [CrossRef]
- Cabrera, S.; Arrayas, R.G.; Martın-Matute, B.; Cossıob, F.P.; Carreteroa, J.C. CuI-fesulphos complexes: Efficient chiral catalysts for asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron 2007, 63, 6587–6602. [Google Scholar] [CrossRef]
- Vale, J.R.; Rimpilainen, T.; Sievanen, E.; Rissanen, K.; Afonso, C.A.M.; Candeias, N.R. Pot-economy autooxidative condensation of 2-aryl-2-lithio-1,3-dithianes. J. Org. Chem. 2018, 83, 1948–1958. [Google Scholar] [CrossRef] [PubMed]
- Arunprasath, D.; Sekar, G. A transition-metal-free and base-mediated carbene insertion into sulfur-sulfur and selenium-selenium bonds: An easy access to thio- and selenoacetals. Adv. Synth. Catal. 2017, 359, 698–708. [Google Scholar] [CrossRef]
- Kumar, A.; Rao, M.S.; Rao, V.K. Cerium triflate: An efficient and recyclable catalyst for chemoselective thioacetalization of carbonyl compounds under solvent-free conditions. Aust. J. Chem. 2010, 63, 135–140. [Google Scholar] [CrossRef]
- Wu, Y.C.; Zhu, J. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbonyl compounds. J. Org. Chem. 2008, 73, 9522–9524. [Google Scholar] [CrossRef]
- Soederstroem, M.; Matt, C.; Odell, L.R. Thioacetalation and multi-component thiomethylative friedel-crafts arylation using BF3SMe2. ACS Omega 2023, 8, 4320–4330. [Google Scholar] [CrossRef]
- Orrillo, A.G.; Escalante, A.M.; Furlan, R.L.E. Dithioacetal exchange: A new reversible reaction for dynamic combinatorial chemistry. Chem. Eur. J. 2016, 22, 6746–6749. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; Gao, Y.; Meng, Q.; Yu, S.; Weiss, R.G.; Tung, C.; Wu, L. Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. Angew. Chem. Int. Ed. 2014, 53, 2085–2089. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yu, S.; Kim, J.G.; Lee, S. Palladium-catalyzed carbonylation of thioacetates and aryl iodides for the synthesis of S-aryl thioesters. Org. Chem. Front. 2018, 5, 2447–2452. [Google Scholar] [CrossRef]
Entry | Electrophilic Halogenation Reagents (eq.) | Solvent (mL) | Yield (2a, %) |
---|---|---|---|
1 | NCS (1.5) | DCM | 61 |
2 | NCS (1.5) | DCE | 54 |
3 | NCS (1.5) | MeCN | 56 |
4 | NCS (1.5) | 1,4-Dioxane | 62 |
5 | NCS (1.5) | DMSO | trace |
6 | NCS (1.5) | DMF | 65 |
7 | NCS (1.5) | MeOH | trace |
8 | NCS (1.5) | PhMe | 52 |
9 | DCDMH (1.5) | CHCl3 | 38 |
10 | NCP (1.5) | CHCl3 | 75 |
11 | NBS (1.5) | CHCl3 | 70 |
12 | NIS (1.5) | CHCl3 | trace |
13 | Selectfluor (1.5) | CHCl3 | trace |
14 | NFSI (1.5) | CHCl3 | 44 |
15 | NCS (1.0) | CHCl3 | 51 |
16 | NCS (2.0) | CHCl3 | 73 |
17 | - | CHCl3 | 0 |
Entry | Electrophilic Halogenation Reagents (eq.) | Solvent (mL) | Yield (5a, %) | Yield (2a, %) | Yield (6, %) | Yield (7, %) |
---|---|---|---|---|---|---|
1 | NCS (1.5) | PhF | 13 | 21 | 7 | 40 |
2 | NCS (1.5) | PhCF3 | 6 | 22 | 10 | 47 |
3 | NCS (1.5) | MeCN | 0 | 43 | 25 | 0 |
4 | NCS (1.5) | DCE | 0 | 50 | 28 | 0 |
5 | NCS (1.5) | CHCl3 | 0 | 71 | 38 | 0 |
6 | NCS (1.5) | THF | 0 | trace | trace | 0 |
7 | NCS (1.5) | MeOH | 0 | trace | trace | 0 |
8 | NCS (1.0) | PhF | 34 | 42 | 5 | 0 |
9 | NCS (2.0) | PhF | trace | trace | trace | 73 |
10 | NBS (1.0) | PhF | 0 | trace | trace | 0 |
11 | NIS (1.0) | PhF | 0 | trace | trace | 0 |
12 | Selectfluor (1.0) | PhF | 0 | trace | trace | 0 |
13 | NFSI (1.0) | PhF | 0 | trace | trace | 0 |
14 | DCDMH (1.0) | PhF | 0 | trace | trace | 45% |
15 | NCP (1.0) | PhF | 12 | 30 | 10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, D.; Huang, Y.; Tang, L.; Yang, K. Metal-Free C(sp3)–S Bond Cleavage of Thioethers to Selectively Access Aryl Aldehydes and Dithioacetals. Chemistry 2025, 7, 89. https://doi.org/10.3390/chemistry7030089
Yuan D, Huang Y, Tang L, Yang K. Metal-Free C(sp3)–S Bond Cleavage of Thioethers to Selectively Access Aryl Aldehydes and Dithioacetals. Chemistry. 2025; 7(3):89. https://doi.org/10.3390/chemistry7030089
Chicago/Turabian StyleYuan, Dan, Yong Huang, Long Tang, and Ke Yang. 2025. "Metal-Free C(sp3)–S Bond Cleavage of Thioethers to Selectively Access Aryl Aldehydes and Dithioacetals" Chemistry 7, no. 3: 89. https://doi.org/10.3390/chemistry7030089
APA StyleYuan, D., Huang, Y., Tang, L., & Yang, K. (2025). Metal-Free C(sp3)–S Bond Cleavage of Thioethers to Selectively Access Aryl Aldehydes and Dithioacetals. Chemistry, 7(3), 89. https://doi.org/10.3390/chemistry7030089