Platform Chemicals from Ethylene Glycol and Isobutene: Thermodynamics “Pays” for Biomass Valorisation and Acquires “Cashback”
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Experimental and Theoretical Thermochemical Methods
3. Results and Discussion
3.1. Absolute Vapour Pressures
3.2. Thermodynamics of Vaporisation
3.3. Validation of the Vaporisation Enthalpies Using Structure–Property Correlations
3.3.1. Correlation with the Normal Boiling Temperatures Tb
3.3.2. Correlation with the Enthalpies of Vaporisation of the Parent Structures
3.4. Standard Molar Enthalpies of Formation in the Liquid Phase
3.5. Standard Molar Enthalpies of Formation in the Gas Phase
3.6. Energetics of Ethylene Glycol Alkylation Reactions from the “First Law” Method
3.7. Thermodynamic Functions of Ethylene Glycol Alkylation from the “Second Law” Method
3.8. Entropies of Ethylene Glycol Tert-Butyl Ethers
3.9. Standard Molar Thermodynamic Functions of Ethylene Glycol Tert-Butyl Ethers
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fukuoka, A.; Dhepe, P.L. Catalytic conversion of cellulose into sugar alcohols. Angew. Chem. Int. Ed. Engl. 2006, 45, 5161–5163. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 2013, 46, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J.G. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts. Angew. Chem. Int. Ed. Engl. 2008, 47, 8510–8513. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Neal, L.; Ding, D.; Wu, W.; Baroi, C.; Gaffney, A.M.; Li, F. Recent Advances in Intensified Ethylene Production—A Review. ACS Catal. 2019, 9, 8592–8621. [Google Scholar] [CrossRef]
- Kandasamy, S.; Samudrala, S.P.; Bhattacharya, S. The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review. Catal. Sci. Technol. 2019, 9, 567–577. [Google Scholar] [CrossRef]
- Smith, R.L. Review of Glycol Ether and Glycol Ether Ester Solvents Used in the Coating Industry. Environ. Health Perspect. 1984, 57, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Samoilov, V.O.; Stolonogova, T.I.; Ramazanov, D.N.; Tyurina, E.V.; Lavrent’ev, V.A.; Porukova, Y.I.; Chernysheva, E.A.; Kapustin, V.M. tert-Butyl Ethers of Renewable Diols as Oxygenated Additives for Motor Gasoline. Part I: Glycerol and Propylene Glycol. Ethers. Pet. Chem. 2023, 1–9. [Google Scholar] [CrossRef]
- Viswanadham, N.; Saxena, S.K. Etherification of glycerol for improved production of oxygenates. Fuel 2013, 103, 980–986. [Google Scholar] [CrossRef]
- Macho, V.; Kavala, M.; Kolieskova, Z. tert-Butyl ethers of polyhydric alcohols. Neftekhimiya 1979, 19, 821–827. [Google Scholar]
- Jayadeokar, S.S.; Sharma, M.M. Ion exchange resin catalysed etherification of ethylene and propylene glycols with isobutylene. React. Polym. 1993, 20, 57–67. [Google Scholar] [CrossRef]
- Klepáčová, K.; Mravec, D.; Kaszonyi, A.; Bajusl, M. Etherification of glycerol and ethylene glycol by isobutylene. Appl. Catal. A Gen. 2007, 328, 1–13. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Tang, J.; Fei, Z.; Liu, Q.; Chen, X.; Cui, M.; Qiao, X. Quest for pore size effect on the catalytic property of defect-engineered MOF-808-SO4 in the addition reaction of isobutylene with ethylene glycol. J. Solid State Chem. 2019, 269, 9–15. [Google Scholar] [CrossRef]
- Verevkin, S.P. Gibbs Energy and Helmholtz Energy: Liquids, Solutions and Vapours; Wilhelm, E., Letcher, T.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2021; ISBN 978-1-83916-201-5. [Google Scholar]
- Chang, T.-K.; Hwang, J.-H.; Huang, H.-Y.; Su, W.-B.; Hong, C.-T. The thermodynamics properties for the liquid phase synthesis of ethylene glycol tert-butyl ether and ethylene glycol di-tert-butyl ether. Shiyou Jikan 2012, 48, 21–37. [Google Scholar]
- Verevkin, S.P.; Emel´yanenko, V.N. Transpiration method: Vapor pressures and enthalpies of vaporization of some low-boiling esters. Fluid Phase Equilibria 2008, 266, 64–75. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Sazonova, A.Y.; Emel´yanenko, V.N.; Zaitsau, D.H.; Varfolomeev, M.A.; Solomonov, B.N.; Zherikova, K.V. Thermochemistry of halogen-substituted methylbenzenes. J. Chem. Eng. Data 2015, 60, 89–103. [Google Scholar] [CrossRef]
- Emel’yanenko, V.N.; Verevkin, S.P. Benchmark thermodynamic properties of 1,3-propanediol: Comprehensive experimental and theoretical study. J. Chem. Thermodyn. 2015, 85, 111–119. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Verevkin, S.P.; Sazonova, A.Y. Vapor pressures and vaporization enthalpies of 5-nonanone, linalool and 6-methyl-5-hepten-2-one. Data evaluation. Fluid Phase Equilibria 2015, 386, 140–148. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Verevkin, S.P. Vapor Pressure of Pure Methyl Oleate—The Main Componene of Biodiesel. Russ. J. Gen. Chem. 2021, 91, 2061–2068. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Schick, C. Substituent effects on the benzene ring. Determination of the intramolecular interactions of substituents in tert-alkyl-substituted catechols from thermochemical measurements. J. Chem. Eng. Data 2000, 45, 946–952. [Google Scholar] [CrossRef]
- Emel´yanenko, V.N.; Verevkin, S.P.; Heintz, A. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J. Am. Chem. Soc. 2007, 129, 3930–3937. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, W.N.; Scott, D.W.; Waddington, G.; Rossini, F.D. Standard states and corrections for combustions in a bomb at constant volume. In Experimental Thermochemistry: Measurements of Heats of Reactions; Rossini, F.D., Ed.; Interscience: New York, NY, USA, 1956; Volume 1, pp. 75–128. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007, 126, 84108–84112. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel´yanenko, V.N.; Notario, R.; Roux, M.V.; Chickos, J.S.; Liebman, J.F. Rediscovering the wheel. Thermochemical analysis of energetics of the aromatic diazines. J. Phys. Chem. Lett. 2012, 3, 3454–3459. [Google Scholar] [CrossRef]
- Samarov, A.A.; Verevkin, S.P. Hydrogen storage technologies: Methyl-substituted biphenyls as an auspicious alternative to conventional liquid organic hydrogen carriers (LOHC). J. Chem. Thermodyn. 2022, 165, 106648. [Google Scholar] [CrossRef]
- SciFinder—Chemical Abstracts Service. Available online: https://scifinder.cas.org/ (accessed on 28 March 2023).
- Reaxys. Available online: https://www.reaxys.com/ (accessed on 28 March 2023).
- Chickos, J.S.; Acree, W.E. Enthalpies of sublimation of organic and organometallic compounds. 1910–2001. J. Phys. Chem. Ref. Data 2002, 31, 537–698. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G.; Liebman, J.F. Heat capacity corrections to a standard state: A comparison of new and some literature methods for organic liquids and solids. Struct. Chem. 1993, 4, 271–278. [Google Scholar] [CrossRef]
- Benson, S.W. Some Observations on the Structures of Liquid Alcohols and Their Heats of Vaporization. J. Am. Chem. Soc. 1996, 118, 10645–10649. [Google Scholar] [CrossRef]
- Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 1–300. [Google Scholar]
- Cox, J.D.; Wagman, D.D.; Medvedev, V.A. CODATA Key Values for Thermodynamics; Hemisphere Pub. Corp.: New York, NY, USA, 1989. [Google Scholar]
- Olofsson, G. Assignment of uncertainties, Chapter 6. In Experimental Chemical Thermodynamics. Combustion Calorimetry; Sunner, S., Mansson, M., Eds.; Pergamon Press: Oxford, UK, 1976; Volume 1, pp. 137–161. [Google Scholar]
- Verevkin, S.P.; Konnova, M.E.; Zherikova, K.V.; Pimerzin, A.A. Thermodynamics of glycerol and diols valorisation via reactive systems of acetals synthesis. Fluid Phase Equilibria 2020, 510, 112503. [Google Scholar] [CrossRef]
- Fredenslund, A.; Jones, R.L.; Prausnitz, J.M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 1975, 21, 1086–1099. [Google Scholar] [CrossRef]
- Parks, G.S.; Kelley, K.K.; Huffman, H.M. Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds. J. Am. Chem. Soc. 1929, 51, 1969–1973. [Google Scholar] [CrossRef]
- Stull, D.R.; Westrum, E.F., Jr.; Sinke, G.C. The Chemical Thermodynamics of Organic Compounds; John Wiley and Sons, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Todd, S.S.; Parks, G.S. Thermal data on organic compounds. XV. Some heat capacity, entropy and free energy data for the isomeric butenes. J. Am. Chem. Soc. 1936, 58, 134–137. [Google Scholar] [CrossRef]
- Benson, S.W. Thermochemical Kinetics, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1976; pp. 47–50. [Google Scholar]
- Domalski, E.S.; Hearing, E.D. Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III. J. Phys. Chem. Ref. Data 1996, 25, 1. [Google Scholar] [CrossRef]
- Domalski, E.S.; Hearing, E.D. Estimation of Thermodynamic Properties of Organic Compounds in the Gas, Liquid, and Solid Phases at 298.15 K. J. Phys. Chem. Ref. Data 1988, 17, 1637. [Google Scholar] [CrossRef]
- Chase, M.W., Jr. NIST-JANAF Themochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data 1998, 9, 1–1951. [Google Scholar]
- Evans, T.W.; Edlund, K.R. Tertiary alkyl ethers, preparation and properties. Ind. Eng. Chem. 1936, 28, 1186–1188. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Heintz, A. Determination of Vaporization Enthalpies of the Branched Esters from Correlation Gas Chromatography and Transpiration Methods. J. Chem. Eng. Data 1999, 44, 1240–1244. [Google Scholar] [CrossRef]
- Atake, T.; Kawaji, H.; Tojo, T.; Kawasaki, K.; Ootsuka, Y.; Katou, M.; Koga, Y. Heat Capacities of Isomeric 2-Butoxyethanols from 13 to 300 K: Fusion and Glass Transition. Bull. Chem. Soc. Jpn. 2000, 73, 1987–1991. [Google Scholar] [CrossRef]
- Pedley, J.P.; Naylor, R.D.; Kirby, S.P. Thermochemical Data of Organic Compounds, 2nd ed.; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Verevkin, S.P.; Emel’yanenko, V.N.; Nell, G. 1,2-Propanediol. Comprehensive experimental and theoretical study. J. Chem. Thermodyn. 2009, 41, 1125–1131. [Google Scholar] [CrossRef]
T/ K a | m/ mg b | V(N2) c/ dm3 | Ta/ K d | Flow/ dm3·h−1 | p/ Pa e | u(p)/ Pa f | / kJ·mol−1 | / J·K−1·mol−1 |
---|---|---|---|---|---|---|---|---|
ethylene glycol mono-tert-butyl ether (EGM): (298.15 K) = (53.0 ± 0.6) kJ·mol−1 | ||||||||
(298.15 K) = (129.5 ± 1.1) J·mol−1·K−1 | ||||||||
; | ||||||||
288.3 | 10.60 | 1.540 | 292.0 | 2.05 | 143.7 | 3.6 | 53.9 | 132.4 |
291.3 | 10.41 | 1.195 | 292.8 | 2.05 | 181.7 | 4.6 | 53.6 | 131.6 |
293.2 | 10.76 | 1.084 | 294.8 | 1.05 | 207.9 | 5.2 | 53.5 | 131.0 |
296.2 | 9.88 | 0.816 | 293.2 | 2.04 | 251.5 | 6.3 | 53.2 | 129.9 |
298.1 | 8.22 | 0.582 | 293.6 | 1.06 | 293.4 | 7.4 | 53.1 | 129.5 |
301.0 | 9.98 | 0.578 | 293.0 | 2.04 | 357.1 | 9.0 | 52.8 | 128.6 |
303.0 | 9.29 | 0.458 | 293.2 | 1.06 | 419.2 | 10.5 | 52.7 | 128.3 |
306.0 | 9.74 | 0.400 | 292.2 | 1.04 | 501.0 | 12.5 | 52.4 | 127.3 |
308.0 | 10.09 | 0.353 | 293.4 | 1.06 | 589.5 | 14.8 | 52.2 | 127.0 |
311.0 | 10.24 | 0.305 | 294.0 | 1.05 | 690.9 | 17.3 | 52.0 | 125.9 |
313.0 | 11.61 | 0.301 | 294.4 | 1.06 | 794.5 | 19.9 | 51.8 | 125.4 |
317.9 | 14.14 | 0.268 | 295.6 | 1.07 | 1086.5 | 27.2 | 51.4 | 124.2 |
322.8 | 19.30 | 0.261 | 293.4 | 1.08 | 1503.3 | 37.6 | 51.0 | 123.2 |
327.8 | 25.70 | 0.260 | 293.8 | 1.08 | 2006.5 | 50.2 | 50.6 | 122.0 |
T/ K | p/ Pa | u(p)/ Pa a | / kJ·mol−1 | / J·K−1·mol−1 |
---|---|---|---|---|
ethylene glycol mono-tert-butyl ether (EGM): (298.15 K) = (53.1 ± 0.2) kJ·mol−1 | ||||
(298.15 K) = (130.2 ± 0.2) J·mol−1·K−1 | ||||
; | ||||
284.01 | 105.0 | 0.6 | 54.3 | 134.2 |
284.03 | 105.1 | 0.6 | 54.3 | 134.2 |
286.39 | 127.0 | 0.7 | 54.1 | 133.5 |
288.70 | 152.1 | 0.8 | 53.9 | 132.8 |
288.74 | 152.8 | 0.8 | 53.9 | 132.8 |
291.10 | 183.1 | 1.0 | 53.7 | 132.2 |
293.51 | 219.7 | 1.1 | 53.5 | 131.5 |
293.54 | 219.2 | 1.1 | 53.5 | 131.5 |
295.90 | 261.9 | 1.4 | 53.3 | 130.8 |
298.26 | 311.6 | 1.6 | 53.1 | 130.2 |
298.30 | 310.7 | 1.6 | 53.1 | 130.1 |
298.33 | 312.0 | 1.6 | 53.1 | 130.1 |
300.66 | 368.2 | 1.9 | 52.9 | 129.5 |
300.70 | 370.1 | 1.9 | 52.9 | 129.5 |
303.10 | 435.4 | 2.2 | 52.7 | 128.8 |
303.13 | 436.7 | 2.2 | 52.7 | 128.8 |
305.46 | 513.9 | 2.6 | 52.6 | 128.2 |
307.93 | 606.2 | 3.1 | 52.4 | 127.6 |
307.95 | 608.2 | 3.1 | 52.4 | 127.6 |
310.26 | 707.5 | 3.6 | 52.2 | 127.0 |
312.74 | 831.2 | 4.2 | 52.0 | 126.3 |
312.76 | 830.7 | 4.2 | 52.0 | 126.3 |
315.14 | 967.1 | 4.9 | 51.8 | 125.7 |
317.51 | 1120.2 | 5.7 | 51.6 | 125.1 |
M a | T-Range | (Tav) | (298.15 K) b | Ref. | |
---|---|---|---|---|---|
K | kJ·mol−1 | kJ·mol−1 | |||
ethylene glycol | T | 288.3–327.8 | 52.4 ± 0.6 | 53.0 ± 0.7 | Table 1 |
mono-tert-butyl ether (EGM) | S | 284.0–317.5 | 53.0 ± 0.1 | 53.1 ± 0.2 | Table 2 |
7580-85-0 | BP | 323.0–427.0 | 44.9 ± 0.9 | 50.8 ± 2.2 | Table S2 |
Tb | 52.9 ± 0.5 | this work | |||
SP | 53.1 ± 0.5 | this work | |||
53.1 ± 0.2c | |||||
ethylene glycol | BP | 335.0–444.0 | 44.3 ± 0.2 | 53.5 ± 1.8 | Table S2 |
di-tert-butyl ether (EGD) | Tb | 51.7 ± 2.0 | this work | ||
SP | 52.3 ± 0.5 | this work | |||
52.3 ± 0.2c |
R-CH2CH2OH | Tb/ a K | (298.15 K)exp/ kJ·mol−1 | (298.15 K)calc/ b kJ·mol−1 | Δ/ c kJ·mol−1 |
---|---|---|---|---|
CH3-CH2CH2OH | 397.3 | 45.2 | 45.5 | −0.3 |
Et-CH2CH2OH | 408.1 | 48.2 | 48.1 | 0.1 |
Pr-CH2CH2OH | 422.9 | 52.1 | 51.7 | 0.4 |
Bu-CH2CH2OH | 444.2 | 56.6 | 56.9 | −0.3 |
tBu-CH2CH2OH | 428.0 | 52.9 |
R-O-R | Tb/ a K | (298.15 K)exp/ kJ·mol−1 | (298.15 K)calc/ b kJ·mol−1 | Δ/ c kJ·mol−1 |
---|---|---|---|---|
Et-O-Et | 307.6 | 27.4 | 26.4 | 1.0 |
Pr-O-Pr | 363.1 | 35.8 | 36.7 | −0.9 |
Bu-O-Bu | 413.5 | 45.0 | 46.0 | −1.0 |
tBu-O-tBu | 379.9 | 37.7 | 39.8 | −2.1 |
RO-CH2CH2-OR | ||||
CH3O-CH2CH2-OCH3 | 358.0 | 36.5 | 35.8 | 0.7 |
EtO-CH2CH2-OEt | 392.5 | 43.3 | 42.1 | 1.2 |
PrO-CH2CH2-OPr | 436.4 | 50.6 | 50.2 | 0.4 |
BuO-CH2CH2-OBu | 479.0 | 58.8 | 58.1 | 0.7 |
tBuO-CH2CH2-OtBu | 444.0 | - | 51.7 |
R-O-R | (298.15 K)exp | R-CH2CH2OH | (298.15 K)exp | (298.15 K)calc b | Δ c |
---|---|---|---|---|---|
CH3-O-CH3 | 19.3 | CH3-CH2CH2OH | 45.2 | 44.9 | 0.3 |
Et-O-Et | 27.4 | Et-CH2CH2OH | 48.2 | 48.5 | −0.3 |
Pr-O-Pr | 35.8 | Pr-CH2CH2OH | 52.1 | 52.3 | −0.2 |
Bu-O-Bu | 45.0 | Bu-CH2CH2OH | 56.6 | 56.4 | 0.2 |
tBu-O-tBu | 37.7 | tBu-CH2CH2OH | 53.1 ± 0.5 d |
R-O-R | (298.15 K)exp | RO-CH2CH2-OR | (298.15 K)exp | (298.15 K)calc b | Δ c |
---|---|---|---|---|---|
CH3-O-CH3 | 19.3 | CH3O-CH2CH2-OCH3 | 36.5 | 36.4 | 0.1 |
Et-O-Et | 27.4 | EtO-CH2CH2-OEt | 43.3 | 43.4 | −0.1 |
Pr-O-Pr | 35.8 | PrO-CH2CH2-OPr | 50.6 | 50.7 | −0.1 |
Bu-O-Bu | 45.0 | BuO-CH2CH2-OBu | 58.8 | 58.7 | 0.1 |
tBu-O-tBu | 37.7 | tBuO-CH2CH2-OtBu | 52.3 ± 0.5 d |
Experiment | Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6 |
---|---|---|---|---|---|---|
m (substance)/g | 0.325060 | 0.281828 | 0.241385 | 0.325939 | 0.272169 | 0.230654 |
m′ (cotton)/g | 0.000962 | 0.001073 | 0.001054 | 0.000959 | 0.000957 | 0.001093 |
m″ (polyethylene)/g | 0.311926 | 0.301513 | 0.389646 | 0.399094 | 0.400959 | 0.424149 |
ΔTc/K b | 1.69089 | 1.56374 | 1.75149 | 1.96599 | 1.85448 | 1.83677 |
(εcalor)·(−ΔTc)/J | −25,020.3 | −23,138.8 | −25,917 | −29,091 | −27,441 | −27,179 |
(εcont)·(−ΔTc) /J | −27.69 | −25.42 | −28.98 | −33.14 | −30.92 | −30.54 |
ΔUdecomp HNO3/J | 44.2 | 42.41 | 46.59 | 52.56 | 50.77 | 50.17 |
ΔUcorr/J | 7.63 | 6.97 | 7.93 | 9.13 | 8.47 | 8.35 |
−m′·Δcu′/J | 16.3 | 18.18 | 17.86 | 16.25 | 16.22 | 18.52 |
−m″·Δcu″/J | 14,460.05 | 13,977.33 | 18,062.94 | 18,500.92 | 18,587.38 | 19,662.4 |
(liq)/(J·g−1) | −32,362.8 | −32,357.8 | −32,357.9 | −32,353.6 | −324,366.2 | −32,386.4 |
Δcu°(liq)/(J·g−1) a | 32,364.1 ± 4.8 c | |||||
(liq)/(kJ·mol−1) b | −3833.3 ± 1.5 d | |||||
(liq)/(kJ·mol−1) b | −528.6 ± 1.7 d |
Compound | (liq)exp | b | (g)exp | (g)theor c |
---|---|---|---|---|
EGM | −528.6 ± 1.7 | 53.1 ± 0.2 | −475.5 ± 1.7 | −477.2 ± 3.5 |
EGD | (−605.8 ± 3.6) d | 52.3 ± 0.6 | - | −553.5 ± 3.5 |
Reaction | <T-Range> a | a | b | R2 | b | b |
---|---|---|---|---|---|---|
K | kJ·mol−1 | J·mol−1 K−1 | ||||
Equation (1) | 318–393 | −10.9 | 4160 | 0.9743 | −34.6 ± 3.7 | −91 ± 10 |
Equation (2) | 318–393 | −11.2 | 4395 | 0.9821 | −36.5 ± 3.2 | −93.1 ± 9.1 |
Isobutene | EG | EGM | EGD | |
---|---|---|---|---|
σ | 18 | 2 | 243 | 13122 |
(liq): exp | 194.0 [40] | 166.9 [38] | 269.9 | 370.8 |
add a | 223.0 | 158.7 | 291.0 | 375.6 |
add + (σ-corr) | 198.9 | 153.0 | 243.4 | 296.8 |
(g): exp | 293.6 [39] | 323.6 [39] | 400.1 b | 498.0 b |
add a | 319.0 | 329.8 | 477.8 | 566.3 |
add + (σ-corr) | 295.0 | 324.1 | 432.1 | 487.5 |
G4 | 443.8 | 571.3 | ||
G4 + (σ-corr) | 398.1 | 492.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verevkin, S.P.; Zhabina, A.A. Platform Chemicals from Ethylene Glycol and Isobutene: Thermodynamics “Pays” for Biomass Valorisation and Acquires “Cashback”. Chemistry 2023, 5, 1171-1189. https://doi.org/10.3390/chemistry5020079
Verevkin SP, Zhabina AA. Platform Chemicals from Ethylene Glycol and Isobutene: Thermodynamics “Pays” for Biomass Valorisation and Acquires “Cashback”. Chemistry. 2023; 5(2):1171-1189. https://doi.org/10.3390/chemistry5020079
Chicago/Turabian StyleVerevkin, Sergey P., and Aleksandra A. Zhabina. 2023. "Platform Chemicals from Ethylene Glycol and Isobutene: Thermodynamics “Pays” for Biomass Valorisation and Acquires “Cashback”" Chemistry 5, no. 2: 1171-1189. https://doi.org/10.3390/chemistry5020079
APA StyleVerevkin, S. P., & Zhabina, A. A. (2023). Platform Chemicals from Ethylene Glycol and Isobutene: Thermodynamics “Pays” for Biomass Valorisation and Acquires “Cashback”. Chemistry, 5(2), 1171-1189. https://doi.org/10.3390/chemistry5020079