Activated Carbon from Sugarcane Bagasse: A Low-Cost Approach towards Cr(VI) Removal from Wastewater
Abstract
:1. Introduction
“Von dem metallischen Chrom wird noch keine Anwendung gemacht; um so wichtiger aber sind durch ihre technischen Anwendungen mehrere seiner Verbindungen geworden. Auf den Organismus wirken sie als Gifte, indessen hat man sie noch nicht als Arzneimittel anzuwenden versucht.”
“Metallic chromium is not yet used, but several of its compounds have become all the more important through their technical applications. They act as poisons on the organism, but no attempt has yet been made to use them as medicines.”
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water. Air. Soil Pollut. 2017, 228, 190. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Nwankwo, W.; Osibote, O.A.; Paumo, H.K.; Ama, O.M.; Adetunji, C.O.; Siloko, I.U. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manag. 2021, 280, 111809. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Sarkar, A.; Sen, S. Removal of chromium from industrial effluents using nanotechnology: A review. Nanotechnol. Environ. Eng. 2017, 2, 11. [Google Scholar] [CrossRef]
- Itankar, N.; Patil, Y. Management of hexavalent chromium from industrial waste using low-cost waste biomass. Procd. Soc. Behav. 2014, 133, 219–224. [Google Scholar] [CrossRef]
- Joshi, K.M.; Shrivastava, V.S. Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Appl. Nanosci. 2011, 1, 147–155. [Google Scholar] [CrossRef]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- Liebig, J.; Poggendorff, J.C.; Wöhler, F. Chrom. In Handwörterbuch der Reinen und Angewandten Chemie, 1st ed.; Vieweg und Sohn: Braunschweig, France, 1842; Volume 2, pp. 264–284. [Google Scholar]
- Wang, Y.; Su, H.; Gu, Y.; Song, X.; Zhao, J. Carcinogenicity of chromium and chemoprevention: A brief update. Oncotargets Ther. 2017, 10, 4065–4079. [Google Scholar] [CrossRef]
- Laschinsky, N.; Kottwitz, K.; Freund, B.; Dresow, B.; Fischer, R.; Nielsen, P. Bioavailability of chromium(III)-supplements in rats and humans. Biometals 2012, 25, 1051–1060. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Mia, M.A.S.; Ahmad, F.; Rahman, M.M. An overview of chromium removal techniques from tannery effluent. Appl. Water Sci. 2020, 10, 205. [Google Scholar] [CrossRef]
- Stambulska, U.Y.; Bayliak, M.M.; Lushchak, V.I. Chromium(VI) toxicity in legume plants: Modulation effects of rhizobial symbiosis. Biomed Res. Int. 2018, 2018, 8031213. [Google Scholar] [CrossRef]
- Oliveira, H. Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. J. Bot. 2012, 2012, 375843. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Kuang, Y.; Jiang, Z.; Yang, M. Removal of hexavalent chromium in aquatic solutions by pomelo peel. Water Sci. Eng. 2020, 13, 65–73. [Google Scholar] [CrossRef]
- Ahmed, R.; Moisy, P.; Banerji, A.; Hesemann, P.; Taubert, A. Monitoring and Management of Anions in Polluted Aqua Systems: Case Studies on Nitrate, Chromate, Pertechnetate and Diclofenac. In Progress and Prospects in the Management of Oxoanion Polluted Aqua Systems; Oladoja, N., Unuabonah, E.I., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 293–348. [Google Scholar]
- Lofu, A.; Mastrorilli, P.; Dell’Anna, M.M.; Mali, M.; Sisto, R.; Vignola, R. Iron(II) modified natural zeolites for hexavalent chromium removal from contaminated water. Arch. Environ. Prot. 2016, 42, 35–40. [Google Scholar] [CrossRef]
- Kumar, R.; Arya, D.K.; Singh, N.; Vats, H.K. Removal of Cr (VI) Using Low Cost Activated Carbon Developed by Agricultural Waste. IOSR J. Appl. Chem. 2017, 10, 76–79. [Google Scholar] [CrossRef]
- Ai, T.; Jiang, X.; Liu, Q. Chromium removal from industrial wastewater using Phyllostachys pubescens biomass loaded Cu-S nanospheres. Open Chem. 2018, 16, 842–852. [Google Scholar] [CrossRef]
- Saleem, J.; Bin Shahid, U.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefin. 2019, 9, 775–802. [Google Scholar] [CrossRef]
- Ademiluyi, F.T.; David-West, E.O. Effect of Chemical Activation on the Adsorption of Heavy Metals Using Activated Carbons from Waste Materials. ISRN Chem. Eng. 2012, 2012, 674209. [Google Scholar] [CrossRef]
- Luo, Y.; Li, D.; Chen, Y.; Sun, X.; Cao, Q.; Liu, X. The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue. J. Mater. Sci. 2019, 54, 5008–5021. [Google Scholar] [CrossRef]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. Review on Activated Carbons by Chemical Activation with FeCl3. J. Carbon Res. 2020, 6, 21. [Google Scholar] [CrossRef]
- Low, L.W.; Teng, T.T.; Ahmad, A.; Morad, N.; Wong, Y.S. A novel pretreatment method of lignocellulosic material as adsorbent and kinetic study of dye waste adsorption. Water Air Soil Pollut. 2011, 218, 293–306. [Google Scholar] [CrossRef]
- Elangovan, R.; Philip, L.; Chandraraj, K. Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies. J. Hazard. Mater. 2008, 152, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.C.; Wu, P.H.; Tseng, R.L.; Juang, R.S. Preparation of novel activated carbons from H2SO4-Pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J. Environ. Manag. 2011, 92, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.; Shokry, H.; Hamad, H. New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Materials 2020, 13, 2498. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Cai, Y.; Liu, L.; Zeng, J. Cr(VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method. Cellulose 2019, 26, 4921–4934. [Google Scholar] [CrossRef]
- Kadam, A.A.; Lade, H.S.; Patil, S.M.; Govindwar, S.P. Low cost CaCl2 pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation. Bioresour. Technol. 2013, 132, 276–284. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, Y.; Sun, X.; Tian, F.; Sun, F.; Liang, C.; You, W.; Han, C.; Li, C. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir 2003, 19, 731–736. [Google Scholar] [CrossRef]
- Hunsom, M.; Autthanit, C. Preparation of sludge-derived KOH-activated carbon for crude glycerol purification. J. Mater. Cycles Waste Manag. 2017, 19, 213–225. [Google Scholar] [CrossRef]
- Bansal, M.; Garg, U.; Singh, D.; Garg, V.K. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: A case study of rice husk. J. Hazard. Mater. 2009, 162, 312–320. [Google Scholar] [CrossRef]
- Ullah, I.; Nadeem, R.; Iqbal, M.; Manzoor, Q. Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol. Eng. 2013, 60, 99–107. [Google Scholar] [CrossRef]
- Harripersadth, C.; Musonge, P.; Makarfi Isa, Y.; Morales, M.G.; Sayago, A. The application of eggshells and sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueous solutions. S. Afr. J. Chem. Eng. 2020, 34, 142–150. [Google Scholar] [CrossRef]
- Siqueira, T.C.A.; da Silva, I.Z.; Rubio, A.J.; Bergamasco, R.; Gasparotto, F.; de Souza Paccola, E.A.; Yamaguchi, N.U. Sugarcane bagasse as an efficient biosorbent for methylene blue removal: Kinetics, isotherms and thermodynamics. Int. J. Environ. Res. Public Health 2020, 17, 526. [Google Scholar] [CrossRef]
- Giusto, L.A.R.; Pissetti, F.L.; Castro, T.S.; Magalhães, F. Preparation of Activated Carbon from Sugarcane Bagasse Soot and Methylene Blue Adsorption. Water Air Soil Pollut. 2017, 228, 249. [Google Scholar] [CrossRef]
- Shah, G.M.; Nasir, M.; Imran, M.; Bakhat, H.F.; Rabbani, F.; Sajjad, M.; Farooq, A.B.U.; Ahmad, S.; Song, L. Biosorption potential of natural, pyrolysed and acid-assisted pyrolysed sugarcane bagasse for the removal of lead from contaminated water. PeerJ 2018, 6, e5672. [Google Scholar] [CrossRef] [PubMed]
- Abushawish, A.; Almanassra, I.W.; Backer, S.N.; Jaber, L.; Khalil, A.K.A.; Abdelkareem, M.A.; Sayed, E.T.; Alawadhi, H.; Shanableh, A.; Atieh, M.A. High-efficiency removal of hexavalent chromium from contaminated water using nitrogen-doped activated carbon: Kinetics and isotherm study. Mater. Chem. Phys. 2022, 291, 126758. [Google Scholar] [CrossRef]
- Elham, A.; Hossein, T.; Mahnoosh, H. Removal of Zn(II) and Pb (II) ions Using Rice Husk in Food Industrial Wastewater. J. Appl. Sci. Environ. Manag. 2010, 14, 159–162. [Google Scholar] [CrossRef]
- Sarker, T.S.; Azam, S.M.G.G.; El-Gawad, A.M.A.; Gaglione, S.A.; Bonanomi, G. Sugarcane bagasse: A potential low-cost biosorbent for the removal of hazardous materials. Clean Technol. Environ. 2017, 19, 2343–2362. [Google Scholar] [CrossRef]
- Block, I.; Guenter, C.; Duarte-Rodrigues, A.; Paasch, S.; Hesemann, P.; Taubert, A. Carbon adsorbents from spent coffee for removal of methylene blue and methyl orange from water. Materials 2021, 14, 3996. [Google Scholar] [CrossRef]
- Zeydouni, G.; Rodriguez Couto, S.; Nourmoradi, H.; Basiri, H.; Amoatey, P.; Esmaeili, S.; Saeidi, S.; Keishams, F.; Mohammadi, M.J.; Khaniabadi, Y.O. H2SO4-modified Aloe vera leaf shells for the removal of P-chlorophenol and methylene blue from aqueous environment. Toxin Rev. 2020, 39, 57–67. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Heydari, R.; Nourmoradi, H.; Basiri, H.; Basiri, H. Low-cost sorbent for the removal of aniline and methyl orange from liquid-phase: Aloe Vera leaves wastes. J. Taiwan Inst. Chem. Eng. 2016, 68, 90–98. [Google Scholar] [CrossRef]
- US EPA. SW-846 Test Method 7196A: Chromium, Hexavalent (Colorimetric). 1992. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/7196a.pdf. (accessed on 23 March 2021).
- Evans, S.K.; Wesley, O.N.; Nathan, O.; Moloto, M.J. Chemically purified cellulose and its nanocrystals from sugarcane baggase: Isolation and characterization. Heliyon 2019, 5, e02635. [Google Scholar] [CrossRef]
- Kumar, A.; Singh Negi, Y.; Choudhary, V.; Kant Bhardwaj, N. Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. J. Mater. Phys. Chem. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Meng, J.; Li, S.; Niu, J. Crystallite Structure Characteristics and Its Influence on Methane Adsorption for Different Rank Coals. ACS Omega 2019, 4, 20762–20772. [Google Scholar] [CrossRef]
- Kim, B.-H.; Wazir, A.H.; Yang, K.S.; Bang, Y.H.; Kim, S.R.; Info, A. Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning Review Articles. Carbon Lett. 2011, 12, 70–80. [Google Scholar] [CrossRef]
- Athira, G.; Bahurudeen, A.; Appari, S. Thermochemical Conversion of Sugarcane Bagasse: Composition, Reaction Kinetics, and Characterisation of By-Products. Sugar Tech 2020, 23, 433–452. [Google Scholar] [CrossRef]
- Corrales, R.C.; Mendes, F.M.; Perrone, C.C.; Sant’Anna, C.; de Souza, W.; Abud, Y.; Bon, E.P.; Ferreira-Leitão, V. Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol. Biofuels 2012, 5, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mohtashami, S.-A.; Asasian Kolur, N.; Kaghazchi, T.; Asadi-kesheh, R.; Soleimani, M. Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol. Turkish J. Chem. 2018, 42, 1720–1735. [Google Scholar] [CrossRef]
- Rai, M.K.; Shahi, G.; Meena, V.; Chakraborty, S.; Singh, R.S.; Rai, B.N. Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resour.-Effic. Technol. 2016, 2, S63–S70. [Google Scholar] [CrossRef]
- Savou, V.; Grause, G.; Kumagai, S.; Saito, Y.; Kameda, T.; Yoshioka, T. Pyrolysis of sugarcane bagasse pretreated with sulfuric acid. J. Energy Inst. 2019, 92, 1149–1157. [Google Scholar] [CrossRef]
- Labied, R.; Benturki, O.; Eddine Hamitouche, Y.; and Donnot, A. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorpt. Sci. Technol. 2018, 36, 1066–1099. [Google Scholar] [CrossRef]
- Cabassi, F.; Casu, B.; Perlin, A.S. Infrared absorption and raman scattering of sulfate groups of heparin and related glycosaminoglycans in aqueous solution. Carbohyd. Res. 1978, 63, 1–11. [Google Scholar] [CrossRef]
- Bedin, K.C.; Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Almeida, V.C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chem. Eng. J. 2016, 286, 476–484. [Google Scholar] [CrossRef]
- Suksabye, P.; Thiravetyan, P.; Nakbanpote, W.; Chayabutra, S. Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mater. 2007, 141, 637–644. [Google Scholar] [CrossRef]
- Vo, A.T.; Nguyen, V.P.; Ouakouak, A.; Nieva, A.; Doma, B.T., Jr.; Nguyen Tran, H.; Chao, H.-P. Efficient Removal of Cr(VI) from Water by Biochar and Activated Carbon Prepared through Hydrothermal Carbonization and Pyrolysis: Adsorption-Coupled Reduction Mechanism. Water 2019, 11, 1164. [Google Scholar] [CrossRef]
- Singh, V.K.; Tiwari, P.N. Removal and Recovery of Chromium(VI) from Industrial Waste Water. J. Chem. Technol. Biotechnol. 1997, 69, 376–382. [Google Scholar] [CrossRef]
- Álvarez, P.; Blanco, C.; Granda, M. The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues. J. Hazard. Mater. 2007, 144, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.; Mestre, A.S.; Carvalho, A.P.; Pires, J. Activated carbon derived from cork powder waste by KOH activation: Preparation, characterization, and VOCs adsorption. Ind. Eng. Chem. Res. 2008, 47, 5841–5846. [Google Scholar] [CrossRef]
- Chowdhury, M.; Mostafa, M.G.; Biswas, T.K.; Mandal, A.; Saha, A.K. Characterization of the Effluents from Leather Processing Industries. Environ. Process. 2015, 2, 173–187. [Google Scholar] [CrossRef]
- Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium removal from tannery wastewater by electrocoagulation: Optimization and sludge characterization. Water 2020, 12, 1374. [Google Scholar] [CrossRef]
- Bilgiç, A.; Çimen, A. Removal of chromium(vi) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Adv. 2019, 9, 37403–37414. [Google Scholar] [CrossRef]
Material | Pretreatment |
---|---|
SCB | None (raw SCB after washing and drying, no further pretreatment) |
SB1 | 3M H2SO4 |
SB2 | 30% H3PO4 |
SB3 | 30% ZnCl2 |
SB4 | 30% HNO3 |
SB5 | 3M HCl |
SB6 | 1M NaOH |
SB7 | 1M KOH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, R.; Block, I.; Otte, F.; Günter, C.; Duarte-Rodrigues, A.; Hesemann, P.; Banerji, A.; Taubert, A. Activated Carbon from Sugarcane Bagasse: A Low-Cost Approach towards Cr(VI) Removal from Wastewater. Chemistry 2023, 5, 1124-1137. https://doi.org/10.3390/chemistry5020077
Ahmed R, Block I, Otte F, Günter C, Duarte-Rodrigues A, Hesemann P, Banerji A, Taubert A. Activated Carbon from Sugarcane Bagasse: A Low-Cost Approach towards Cr(VI) Removal from Wastewater. Chemistry. 2023; 5(2):1124-1137. https://doi.org/10.3390/chemistry5020077
Chicago/Turabian StyleAhmed, Rana, Inga Block, Fabian Otte, Christina Günter, Alysson Duarte-Rodrigues, Peter Hesemann, Amitabh Banerji, and Andreas Taubert. 2023. "Activated Carbon from Sugarcane Bagasse: A Low-Cost Approach towards Cr(VI) Removal from Wastewater" Chemistry 5, no. 2: 1124-1137. https://doi.org/10.3390/chemistry5020077
APA StyleAhmed, R., Block, I., Otte, F., Günter, C., Duarte-Rodrigues, A., Hesemann, P., Banerji, A., & Taubert, A. (2023). Activated Carbon from Sugarcane Bagasse: A Low-Cost Approach towards Cr(VI) Removal from Wastewater. Chemistry, 5(2), 1124-1137. https://doi.org/10.3390/chemistry5020077