On-Surface Chemistry on Low-Reactive Surfaces
Abstract
:1. Introduction
2. Results
2.1. Passivated-Metal Surface
2.1.1. Light-Induced Reactions
2.1.2. On-Flight Activated Reactions
2.1.3. STM Tip Activated Reactions
2.2. Semiconductors
2.2.1. Silicon Surfaces
2.2.2. Non-Silicon Based Semiconductors
2.3. Bulk Insulators
2.3.1. Thermal-Induced Polymerization
2.3.2. Light-Induced Polymerization
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.V.; Hecht, S. Nano-Architectures by Covalent Assembly of Molecular Building Blocks. Nat. Nanotechnol. 2007, 2, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; Mullen, K.; et al. Atomically Precise Bottom-Up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Matena, M.; Riehm, T.; Stöhr, M.; Jung, T.A.; Gade, L.H. Transforming Surface Coordination Polymers into Covalent Surface Polymers: Linked Polycondensed Aromatics through Oligomerization of N-Heterocyclic Carbene Intermediates. Angew. Chem. 2008, 47, 2414–2417. [Google Scholar] [CrossRef] [PubMed]
- Grill, L.; Hecht, S. Covalent on-Surface Polymerization. Nat. Chem. 2020, 12, 115–130. [Google Scholar] [CrossRef]
- Clair, S.; de Oteyza, D.G. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019, 119, 4717–4776. [Google Scholar] [CrossRef]
- Held, P.A.; Fuchs, H.; Studer, A. Covalent-Bond Formation via On-Surface Chemistry. Chem. Eur. J. 2017, 23, 5874–5892. [Google Scholar] [CrossRef]
- Bartels, L. Tailoring Molecular Layers at Metal Surfaces. Nat. Chem. 2010, 2, 87–95. [Google Scholar] [CrossRef]
- Lackinger, M. On-Surface Polymerization—A Versatile Synthetic Route to Two-Dimensional Polymers: On-surface Polymerization. Polym. Int. 2015, 64, 1073–1078. [Google Scholar] [CrossRef]
- Geagea, E.; Jeannoutot, J.; Morgenthaler, L.; Lamare, S.; Rochefort, A.; Palmino, F.; Chérioux, F. Unravelling the Growth Mechanism of (3,1) Graphene Nanoribbons on a Cu(111) Surface. Chem. Commun. 2021, 57, 6043–6045. [Google Scholar] [CrossRef]
- Gomez-Herrero, A.C.; Sanchez-Sanchez, C.; Chérioux, F.; Martinez, J.I.; Abad, J.; Floreano, L.; Verdini, A.; Cossaro, A.; Mazaleyrat, E.; Guisset, B.; et al. Copper-Assisted Oxidation of Catechols into Quinone Derivatives. Chem. Sci. 2021, 12, 2257–2267. [Google Scholar] [CrossRef]
- Zuzak, R.; Jancarik, A.; Gourdon, A.; Szymonski, M.; Godlewski, S. On-Surface Synthesis with Atomic Hydrogen. ACS Nano 2020, 14, 13316–13323. [Google Scholar] [CrossRef] [PubMed]
- Okawa, Y.; Aono, M. Nanoscale Control of Chain Polymerization. Nature 2001, 409, 683–684. [Google Scholar] [CrossRef] [PubMed]
- Den Boer, D.; Elemans, J.A.A.W. Triggered Chemical Reactions by Scanning Tunneling Microscopy: From Atoms to Polymers. Eur. Polym. J. 2016, 83, 390–406. [Google Scholar] [CrossRef]
- Fan, Q.; Martinez-Jimenez, D.; Krug, C.K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J.M. Nanoribbons with Nonalternant Topology from Fusion of Polyazulene: Carbon Allotropes beyond Graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Gao, H.-Y.; Fuchs, H. Frontiers of on-surface synthesis: From principles to applications. Nano Today 2017, 13, 77–96. [Google Scholar] [CrossRef]
- Palmino, F.; Loppacher, C.; Chérioux, F. Photochemistry Highlights on On-Surface Synthesis. ChemPhysChem 2019, 20, 2271–2280. [Google Scholar] [CrossRef]
- Basagni, A.; Ferrighi, L.; Cattelan, M.; Nicolas, L.; Handrup, K.; Vaghi, L.; Papagni, A.; Sedona, F.; Di Valentin, C.; Agnoli, S.; et al. On-surface photo-dissociation of C–Br bonds: Towards room temperature Ullmann coupling. Chem. Commun. 2015, 51, 12593–12596. [Google Scholar] [CrossRef]
- Guan, L.; Palmino, F.; Lacroix, J.-C.; Chérioux, F.; Sun, X. [2+2] Cyclo-Adiition Reactions for Efficient Polymerization on HOPG surface at ambient Conditions. Nanomaterials 2022, 12, 1334. [Google Scholar] [CrossRef]
- Gross, L.; Schuler, B.; Pavlicek, P.; Fatayer, S.; Majzik, Z.; Moll, N.; Pena, D.; Meyer, G. Atomic Force Microscopy for Molecular Structure Elucidation. Angew. Chem. Int. Ed. 2018, 57, 3888–3908. [Google Scholar] [CrossRef]
- Wu, X.; Delbianco, M.; Anggara, K.; Michowicz, T.; Pardo-Vargas, A.; Bharate, P.; Sen, S.; Pristl, M.; Rauschenbach, S.; Schlickhum, U.; et al. Imaging single glycans. Nature 2020, 582, 375–378. [Google Scholar] [CrossRef]
- Brülke, C.; Bauer, O.; Sokolowski, M.M. The influence of an interfacial hBN layer on the fluorescence of an organic molecule. Beilstein J. Nanotechnol. 2020, 11, 1663–1684. [Google Scholar] [CrossRef] [PubMed]
- Jacobse, P.H.; Mangnus, M.J.J.; Zevenhuizen, S.J.M.; Swart, I. Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons. ACS Nano 2018, 12, 7048–7056. [Google Scholar] [CrossRef] [PubMed]
- Lackinger, M. Synthesis on inert surfaces. Dalton Trans. 2021, 50, 10020–10027. [Google Scholar] [CrossRef]
- Sun, K.; Fang, Y.; Chi, L. On-surface synthesis on nonmetallic substrates. ACS Mater. Lett. 2021, 3, 56–63. [Google Scholar] [CrossRef]
- Maier, S.; Stöhr, M. Molecular assemblies on surfaces: Towards physical and electronic decoupling of organic molecules. Beilstein J. Nanotechnol. 2021, 12, 950–956. [Google Scholar] [CrossRef]
- Grossmann, L.; King, B.T.; Reichlmaier, S.; Hartmann, N.; Rosen, J.; Heckl, W.M.; Bjork, J.; Lackinger, M. On-Surface Photopolymerization of Two-dimensional Polymers Ordered on the Mesoscale. Nat. Chem. 2021, 13, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Kissel, P.; Murray, D.J.; Wulftrange, W.J.; Catalano, V.J.; King, B.T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 2014, 6, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, G.; Fritton, M.; Lackinger, M. Carbon-Carbon Coupling on Inert Surfaces by Deposition of En Route Generated Aryl Radicals. Angew. Chem. Int. Ed. 2020, 59, 22785–22789. [Google Scholar] [CrossRef]
- Lau, K.K.S.; Gleason, K.K. Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates): An Experimental Study. Macromolecules 2006, 39, 3688–3694. [Google Scholar] [CrossRef]
- Eichhorn, J.; Nieckarz, D.; Ochs, O.; Debabrata, S.; Schmittel, M.; Szabelski, P.J.; Lackinger, M. On-Surface Ullmann Coupling: The Influence of Kinetic Reaction Parameters on the Morphology and Quality of Covalent Networks. ACS Nano 2014, 8, 7880–7889. [Google Scholar] [CrossRef]
- Eder, G.; Smith, E.F.; Cebula, I.; Heckl, W.M.; Beton, P.H.; Lackinger, M. Solution Preparation of Two-Dimensional Covalently Linked Networks by Polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111). ACS Nano 2013, 7, 3014–3021. [Google Scholar] [CrossRef] [PubMed]
- Rastoo-Lahrood, A.; Bjork, J.; Lischka, M.; Eichhorn, J.; Kloft, S.; Fritton, M.; Samanta, D.; Schmittel, M.; Heckl, W.M.; Lackinger, M. Post-synthtetic Decoupling of On-surface Synthesized Covalent Nanostructures from Ag(111). Angew. Chem. Int. Ed. 2016, 55, 7650–7654. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.V.; Constantini, G.; Kern, K. Engineering Atomic and molecular Nanostructures at Surfaces. Nature 2005, 437, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Hla, S.-W.; Bartels, L.; Meyer, G.; Rieder, K.-H.; Hla, S.-W.; Bartels, L.; Meyer, G.; Rieder, K.-H. Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule Engineering. Phys. Rev. Lett. 2000, 85, 2777. [Google Scholar] [CrossRef]
- Kaiser, K.; Scriven, L.M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H.L. An sp-Hybridized Molecular Carbon Allotrope, Cyclo[18]carbon. Science 2019, 365, 1299–1301. [Google Scholar] [CrossRef]
- Parasuk, V.; Almlof, J.; Feyereisen, M.W. The [18] all-carbon molecule: Cumulene or polyacetylene? J. Am. Chem. Soc. 1991, 113, 1040–1050. [Google Scholar] [CrossRef]
- Neiss, C.; Trushin, E.; Görling, A. The nature of one-dimensional carbon: Polyynic versus cumulenic. ChemPhysChem 2014, 15, 2497–2502. [Google Scholar] [CrossRef]
- Diederich, F.; Rubin, Y.; Knobler, C.B.; Whetten, R.L.; Schriver, K.E.; Houk, K.N.; Li, Y. The higher oxides of carbon C8nO2n (n = 3–5): Synthesis, characterization, and X-ray crystal structure. Formation of cyclo[n]carbon ions Cn+ (n = 18, 24), Cn–(n = 18, 24, 30), and higher carbon ions including C60+ in laser desorption Fourier transform mass spectrometric experiments. J. Am. Chem. Soc. 1991, 113, 495–500. [Google Scholar] [CrossRef]
- Rubin, Y.; Kahr, M.; Knobler, C.B.; Diederich, F.; Wilkins, C.L. All-carbon molecules: Evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 1989, 245, 1088–1090. [Google Scholar] [CrossRef]
- Waltenburg, H.N.; Yates, J.T. Surface Chemistry of Silicon. Chem. Rev. 1995, 95, 1589–1673. [Google Scholar] [CrossRef]
- Hamers, R.J.; Wang, Y. Atomically-Resolved Studies of the Chemistry and Bonding at Silicon Surfaces. Chem. Rev. 1996, 96, 1261–1290. [Google Scholar] [CrossRef]
- Eisenhut, F.; Krüger, J.; Skidin, D.; Nikipar, S.; Alonso, J.M.; Guitian, E.; Perez, D.; Ryndyl, D.A.; Pena, D.; Moresco, F.; et al. Hexacene generated on passivated silicon. Nanoscale 2018, 10, 12582–12587. [Google Scholar] [CrossRef] [PubMed]
- Ruffieux, P.; Wang, S.; Yang, B.; Sanchez-Sanchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C.A.; Passerone, D.; et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Chen, K.-Y.; Chang, Y.J.; Chow, T.J. Acenes Generated from Precursors and Their Semiconducting Properties. Acc. Chem. Res. 2013, 46, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.; Garcia, F.; Eisenhut, F.; Skidin, D.; Alonso, J.M.; Guitian, E.; Perez, D.; Cuniberti, G.; Moresco, F.; Pena, D. Decacene: On-Surface Generation. Angew. Chem. Int. Ed. 2017, 56, 11945–11948. [Google Scholar] [CrossRef]
- Lyo, I.-W.; Kaxiras, E.; Avouris, P. Adsorption of boron on Si(111): Its effect on surface electronic states and reconstruction. Phys. Rev. Lett. 1989, 63, 1261–1264. [Google Scholar] [CrossRef]
- Makoudi, Y.; Jeannoutot, J.; Palmino, F.; Chérioux, F.; Copie, G.; Krzeminski, C.; Cléri, F.; Grandidier, B. Supramolecular self-assembly on the B-Si(111)-(√3x√3)R30°surface: From Single Molecules to Multicomponent Networks. Surfcae Sci. Rep. 2017, 72, 316–349. [Google Scholar] [CrossRef]
- Geagea, E.; Jeannoutot, J.; Féron, M.; Palmino, F.; Thomas, C.M.; Rochefort, A.; Chérioux, F. Collective radical oligomerisation induced by an STM tip on a silicon surface. Nanoscale 2021, 13, 349–354. [Google Scholar] [CrossRef]
- Koppang, M.D.; Woosley, N.F.; Bartak, D.E. Carbon-oxygen bond cleavage reactions by electron transfer. J. Am. Chem. Soc. 1984, 106, 2799–2805. [Google Scholar] [CrossRef]
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef]
- Clot, E.; Eisentein, O.; Jasim, N.; MacGregor, S.A.; McGrady, J.E.; Perutz, R.N. C-F and C-H Bond Activation of Fluorobenzenes and Fluoropyridines at Transition Metal Centers: How Fluorine Tips the Scales. Acc. Chem. Res. 2011, 44, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Amsharov, K.D. Cyclodehydrofluorination of fluoroarenes on metal oxides: Toward bottom-up synthesis of carbon nanostructures on insulating surfaces. Phys. Status Solidi B 2016, 253, 2473–2477. [Google Scholar] [CrossRef]
- Kolmer, M.; Zuzak, R.; Steiner, A.K.; Zajac, L.; Engelund, M.; Godlewski, S.; Szymonski, M.; Amsharov, K. Fluorine-programmed nanozipping to tailored nanographenes on rutile TiO2 surfaces. Science 2019, 363, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Beernink, G.; Dötz, F.; Birkner, A.; Müllen, K.; Wöll, C.H. Template-Mediated Synthesis of Polycyclic Aromatic Hydrocarbons: Cyclodehydrogenation and Planarization of a Hexaphenylbenzene Derivative at a Copper Surface. Angew. Chem. Int. Ed. 1999, 38, 3748–3752. [Google Scholar] [CrossRef]
- Kolmer, M.; Steiner, A.K.; Izydorczyck, I.; Ko, W.; Engelund, M.; Szymonski, M.; Li, A.-P.; Amsharov, K. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science 2020, 369, 571–575. [Google Scholar] [CrossRef]
- Richter, A.; Haapasilta, V.; Venturini, C.; Bechstein, R.; Gourdon, A.; Foster, A.S.; Kühnle, A. Diacetylene Polymerization on a Bulk Insulator Surface. Phys. Chem. Chem. Phys. 2017, 19, 15172–15176. [Google Scholar] [CrossRef]
- Sakamoto, M.; Wasserman, B.; Dresselhaus, M.S.; Wnek, G.E. Enhanced electrical conductivity of polydiacetylene crystals by chemical doping and ion implantation. J. Appl. Phys. 1986, 60, 2788. [Google Scholar] [CrossRef]
- Deshpande, A.; Sham, C.-H.; Alaboson, J.M.P.; Mullin, J.M.; Schatz, G.C.; Hersam, M.C. Self-Assembly and Photopolymerization of Sub-2 nm One-Dimensional Organic Nanostructures on Graphene. J. Am. Chem. Soc. 2012, 134, 16759–16764. [Google Scholar] [CrossRef]
- Para, F.; Bocquet, F.; Nony, L.; Loppacher, C.; Féron, M.; Cherioux, F.; Gao, D.Z.; Federici Canova, F.; Watkins, M.B. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat. Chem. 2018, 10, 1112–1117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geagea, E.; Palmino, F.; Cherioux, F. On-Surface Chemistry on Low-Reactive Surfaces. Chemistry 2022, 4, 796-810. https://doi.org/10.3390/chemistry4030057
Geagea E, Palmino F, Cherioux F. On-Surface Chemistry on Low-Reactive Surfaces. Chemistry. 2022; 4(3):796-810. https://doi.org/10.3390/chemistry4030057
Chicago/Turabian StyleGeagea, Elie, Frank Palmino, and Frédéric Cherioux. 2022. "On-Surface Chemistry on Low-Reactive Surfaces" Chemistry 4, no. 3: 796-810. https://doi.org/10.3390/chemistry4030057
APA StyleGeagea, E., Palmino, F., & Cherioux, F. (2022). On-Surface Chemistry on Low-Reactive Surfaces. Chemistry, 4(3), 796-810. https://doi.org/10.3390/chemistry4030057