A Prediction for the Conversion Performance of H2S to Elemental Sulfur in an Ionic-Liquid-Incorporated Transition Metal Using COSMO-RS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Selection of Cations and Anions of Ionic Liquids Related to H2S Capture for COSMO-RS Screening
2.3. The Prediction of H2S Solubility in ILs and the Validation of the Accuracy of COSMO-RS
2.4. The Formation of New ILs for H2S Conversion to Elemental Sulfur for COSMO-RS Screening
2.5. The Establishment of the Correlation between H2S Solubility in ILs and Conversion Performance
2.6. The Selection of the Best ILs to Be Paired and Incorporated with Transition Metals
2.7. The Prediction of H2S Solubility and Viscosity for Direct H2S Conversion in ILTMs, and the Selection of the Best ILTM
2.8. Synthesis of Ionic-Liquid-Incorporated Transition Metals
3. Results and Discussions
3.1. The Accuracy of COSMO-RS in Predicting H2S Solubility in ILs
3.2. The Establishment of the Correlation between Predicted H2S Solubility in ILs and Conversion Performance of H2S to Elemental Sulfur
3.3. Selection of the Best ILs to Be Paired with Metal
3.4. The Prediction of H2S Solubility and Viscosity for Direct H2S Conversion in IL-Incorporated Transition Metal, and the Selection of the Best IL-Incorporated Transition Metal
4. Conclusions
5. Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Y.; Bai, Q. Subsea Corrosion and Scale. In Subsea Engineering Handbook, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2019; pp. 455–487. [Google Scholar]
- Hantson, P.; Baud, F.J.; Garnie, R. Toxic Gases. In Human Toxicology; Elsevier: Amsterdam, The Netherlands, 1996; pp. 661–669. [Google Scholar]
- Rahnama-Moghadam, S.; Hillis, L.D.; Lange, R.A. Environmental Toxins and the Heart. In Heart and Toxins; Academic Press: Cambridge, MA, USA, 2015; pp. 75–132. [Google Scholar] [CrossRef]
- Kohl, A.L.; Nielsen, R.B. Chapter 8—Sulfur Recovery Processes. In Gas Purification, 5th ed.; Gulf Professional Publishing: Houston, TX, USA, 1997; pp. 670–730. [Google Scholar]
- Stewart, M. Gas Sweetening. In Surface Production Operations, 3rd ed.; Gulf Professional Publishing: Houston, TX, USA, 2014; pp. 433–539. [Google Scholar]
- Khairulin, S.; Kerzhentsev, M.; Salnikov, A.; Ismagilov, Z.R. Direct Selective Oxidation of Hydrogen Sulfide: Laboratory, Pilot and Industrial Tests. Catalysts 2021, 11, 1109. [Google Scholar] [CrossRef]
- Mokhatab, S.; Poe, W.A.; Mak, J.Y. Natural Gas Treating. In Handbook of Natural Gas Transmission and Processing; Gulf Professional Publishing: Houston, TX, USA, 2019; pp. 231–269. [Google Scholar]
- Primavera, A.; Trovarelli, A.; Andreussi, P.; Dolcetti, G. The effect of water in the low-temperature catalytic oxidation of hydrogen sulfide to sulfur over activated carbon. Appl. Catal. A Gen. 1998, 173, 185–192. [Google Scholar] [CrossRef]
- Basu, R.; Clausen, E.C.; Gaddy, J.L. Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog. 1996, 15, 234–238. [Google Scholar] [CrossRef]
- Sipma, J.; Janssen, A.J.H.; Pol, L.W.H.; Lettinga, G. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur. Biotechnol. Bioeng. 2003, 82, 1–11. [Google Scholar] [CrossRef]
- Khabazipour, M.; Anbia, M. Removal of Hydrogen Sulfide from Gas Streams Using Porous Materials: A Review. Ind. Eng. Chem. Res. 2019, 58, 22133–22164. [Google Scholar] [CrossRef]
- Hossain, M.; Park, H.; Choi, H. A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil. Catalysts 2019, 9, 229. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, J.; Huang, Y.; Afzal, R.M.; Zhang, X.; Zhang, S. Predicting H2S solubility in ionic liquids by the quantitative structure–property relationship method using Sσ-profile molecular descriptors. RSC Adv. 2016, 6, 70405–70413. [Google Scholar] [CrossRef]
- Mokhatab, S.; Poe, W.A.; Mak, J.Y. Gas Processing Plant Automation. In Handbook of Natural Gas Transmission and Processing: Principles and Practices; Gulf Professional Publishing: Houston, TX, USA, 2018; pp. 615–642. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V. (Eds.) LNG Plant and Regasification Terminal Operations. In Handbook of Liquefied Natural Gas; Gulf Professional Publishing: Houston, TX, USA, 2014. [Google Scholar]
- Santos, E.; Albo, J.; Irabien, A. Magnetic ionic liquids: Synthesis, properties and applications. RSC Adv. 2014, 4, 40008–40018. [Google Scholar] [CrossRef]
- Le Borgne, S.; Baquerizo, G. Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas. ChemEngineering 2019, 3, 72. [Google Scholar] [CrossRef]
- Heim, T.; Mares, B.; Prosernat, V.S. Direct Oxidation Sulphur Recovery Process for Very Lean Acid Gas Applications. 2016. Available online: https://www.digitalrefining.com/article/1001263/direct-oxidation-sulphur-recovery-process-for-very-lean-acid-gas-applications#.YtUEcYRByMp (accessed on 30 May 2022).
- Sutradhar, M.; Pombeiro, A.J. Vanadium Complexes in Catalytic Oxidations; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Mai, N.L.; Ahn, K.; Koo, Y.-M. Methods for recovery of ionic liquids—A review. Process Biochem. 2014, 49, 872–881. [Google Scholar] [CrossRef]
- Lee, S.H.; Ha, S.H.; You, C.Y.; Koo, Y.M. Recovery of magnetic ionic liquid [bmim]FeCl4 using electromagnet. Korean J. Chem. Eng. 2007, 24, 436–437. [Google Scholar] [CrossRef]
- Chen, Y.; Woodley, J.; Kontogeorgis, G.; Gani, R. Integrated Ionic Liquid and Process Design involving Hybrid Separation Schemes. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 44. [Google Scholar]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids--Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef]
- Zhao, J.L.; Anderson, Q. 2.11—Ionic Liquids in Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Oxford, UK, 2012; pp. 213–242. [Google Scholar]
- Dharaskar, S.A.; Wasewar, K.L.; Varma, M.N.; Shende, D.Z.; Yoo, C.K. Ionic Liquids:—The Novel Solvent for Removal of Dibenzothiophene from Liquid Fuel. Procedia Eng. 2013, 51, 314–317. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Theerthagiri, J.; Vikraman, D.; Yim, C.-J.; Hussain, S.; Sharma, R.; Maiyalagan, T.; Qin, J.; Kim, H.-S. Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications. Polymers 2020, 12, 918. [Google Scholar] [CrossRef]
- Paulechka, Y.; Zaitsau, D.H.; Kabo, G.; Strechan, A. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis (trifluoromethylsulfonyl) amide. Thermochim. Acta 2005, 439, 158–160. [Google Scholar] [CrossRef]
- Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. Adv. Chem. 2014, 2014, 729842. [Google Scholar] [CrossRef]
- Sawant, A.; Raut, D.; Darvatkar, N.; Salunkhe, M. Recent developments of task-specific ionic liquids in organic synthesis. Green Chem. Lett. Rev. 2011, 4, 41–54. [Google Scholar] [CrossRef]
- Gu, Z.; Brennecke, J.F. Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-Based Ionic Liquids. J. Chem. Eng. Data 2002, 47, 339–345. [Google Scholar] [CrossRef]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 Capture by a Task-Specific Ionic Liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W. Oxidative Absorption of Hydrogen Sulfide by Iron-Containing Ionic Liquids. Energy Fuels 2014, 28, 5930–5935. [Google Scholar] [CrossRef]
- Cheng, H.; Li, N.; Zhang, R.; Wang, N.; Yang, Y.; Teng, Y.; Jia, W.; Zheng, S. Measuring and Modeling the Solubility of Hydrogen Sulfide in rFeCl3/[bmim]Cl. Processes 2021, 9, 652. [Google Scholar] [CrossRef]
- Wang, J.; Ding, R. Effect of Water Content on Properties of Homogeneous [bmim]Fe(III)Cl4–H2O Mixtures and Their Application in Oxidative Absorption of H2S. Inorganics 2018, 6, 11. [Google Scholar] [CrossRef]
- Huang, K.; Feng, X.; Zhang, X.-M.; Wu, Y.-T.; Hu, X.-B. The ionic liquid-mediated Claus reaction: A highly efficient capture and conversion of hydrogen sulfide. Green Chem. 2016, 18, 1859–1863. [Google Scholar] [CrossRef]
- Kamgar, A.; Esmaeilzadeh, F. Prediction of H2S solubility in [hmim][Pf6], [hmim][Bf4] and [hmim][Tf2N] using UNIQUAC, NRTL and COSMO-RS. J. Mol. Liq. 2016, 220, 631–634. [Google Scholar] [CrossRef]
- Klamt, A. The Beauty of Fluid Phase Thermodynamics from the Perspective of Quantum Chemistry; The Society of Chemical Engineers: Tokyo, Japan, 2004; pp. 1–10. [Google Scholar]
- Salleh, Z.; Wazeer, I.; Mulyono, S.; El-Blidi, L.; Hashim, M.A.; Hadj-Kali, M.K. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents—COSMO-RS screening and experimental validation. J. Chem. Thermodyn. 2016, 104, 33–44. [Google Scholar] [CrossRef]
- Aminuddin, M.S.; Man, Z.; Khalil, M.A.B.; Abdullah, B. Screening of Metal Chloride Anion-based Ionic Liquids for Direct Conversion of Hydrogen Sulfide by COSMO-RS. E3S Web Conf. 2021, 287, 02003. [Google Scholar] [CrossRef]
- January, R. Thermal conductivity of graphene kirigami: Ultralow and strain robustness. Int. J. Pharma Bio Sci. 2013, 3, 1–3. [Google Scholar]
- Taheri, M.; Zhu, R.; Yu, G.; Lei, Z. Ionic liquid screening for CO2 capture and H2S removal from gases: The syngas purification case. Chem. Eng. Sci. 2020, 230, 116199. [Google Scholar] [CrossRef]
- Dan, M.; Yu, S.; Li, Y.; Wei, S.; Xiang, J.; Zhou, Y. Hydrogen sulfide conversion: How to capture hydrogen and sulfur by photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2019, 42, 100339. [Google Scholar] [CrossRef]
- Jalili, A.H.; Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A.N. Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 2009, 54, 1844–1849. [Google Scholar] [CrossRef]
- Sakhaeinia, H.; Taghikhani, V.; Jalili, A.H.; Mehdizadeh, A.; Safekordi, A.A. Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Fluid Phase Equilibria 2010, 298, 303–309. [Google Scholar] [CrossRef]
- Huang, K.; Wu, Y.-T.; Hu, X.-B. Effect of alkalinity on absorption capacity and selectivity of SO2 and H2S over CO2: Substituted benzoate-based ionic liquids as the study platform. Chem. Eng. J. 2016, 297, 265–276. [Google Scholar] [CrossRef]
- Nematpour, M.; Jalili, A.H.; Ghotbi, C.; Rashtchian, D. Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J. Nat. Gas Sci. Eng. 2016, 30, 583–591. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, B.; Liu, S.; Sun, X.; Zhu, X.; Fu, H. Theoretical and experimental investigation on the capture of H 2 S in a series of ionic liquids. J. Mol. Graph. Model. 2016, 68, 87–94. [Google Scholar] [CrossRef]
- Balchandani, S.; Singh, R. COSMO-RS Analysis of CO2 Solubility in N-Methyldiethanolamine, Sulfolane, and 1-Butyl-3-methyl-imidazolium Acetate Activated by 2-Methylpiperazine for Postcombustion Carbon Capture. ACS Omega 2020, 6, 747–761. [Google Scholar] [CrossRef]
- Salleh, M.Z.M.; Hadj-Kali, M.K.; Hashim, M.A.; Mulyono, S. Ionic liquids for the separation of benzene and cyclohexane—COSMO-RS screening and experimental validation. J. Mol. Liq. 2018, 266, 51–61. [Google Scholar] [CrossRef]
- Santiago, R.; Lemus, J.; Outomuro, A.X.; Bedia, J.; Palomar, J. Assessment of ionic liquids as H2S physical absorbents by thermodynamic and kinetic analysis based on process simulation. Sep. Purif. Technol. 2019, 233, 116050. [Google Scholar] [CrossRef]
- Bavoh, C.; Lal, B.; Nashed, O.; Khan, M.S.; Keong, L.K.; Bustam, M.A. COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation. Chin. J. Chem. Eng. 2016, 24, 1619–1624. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Wei, F. Synthesis and Properties of Ultralong Carbon Nanotubes. In Nanotube Superfiber Materials; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 4; pp. 87–136. [Google Scholar] [CrossRef]
- Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A.N.; Jalili, A. Solubility of H2S in ionic liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N]. J. Chem. Thermodyn. 2009, 41, 1052–1055. [Google Scholar] [CrossRef]
- Sakhaeinia, H.; Jalili, A.H.; Taghikhani, V.; Safekordi, A.A. Solubility of H2S in Ionic Liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF6]) and 1-Ethyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]). J. Chem. Eng. Data 2010, 55, 5839–5845. [Google Scholar] [CrossRef]
- Safavi, M.; Ghotbi, C.; Taghikhani, V.; Jalili, A.H.; Mehdizadeh, A. Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. J. Chem. Thermodyn. 2013, 65, 220–232. [Google Scholar] [CrossRef]
- Jalili, A.H.; Shokouhi, M.; Maurer, G.; Zoghi, A.T.; Ahari, J.S.; Forsat, K. Measuring and modelling the absorption and volumetric properties of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate. J. Chem. Thermodyn. 2018, 131, 544–556. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Y.; Zhang, Z.; Fei, W.; Luo, M.; Zhao, Y. Experimental and simulation study of CO2 and H2S solubility in propylene carbonate, imidazolium-based ionic liquids and their mixtures. J. Chem. Thermodyn. 2019, 142, 106017. [Google Scholar] [CrossRef]
- Guo, S.; Song, B.; Ghalambor, A.; Lin, T.R. Chapter 15—Flow Assurance; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 179–231. [Google Scholar]
- Key, J.A.; Ball, D.W. Introductory Chemistry—1st Canadian Edition; BCcampus: Victoria, BC, Canada, 2014; pp. 195–200. Available online: http://uilis.unsyiah.ac.id/oer/files/original/dcded6f2f4b25f5b280bd6494723b8b3.pdf (accessed on 25 June 2021).
- Huang, K.; Zhang, X.-M.; Zhou, L.-S.; Tao, D.-J.; Fan, J.-P. Highly efficient and selective absorption of H2S in phenolic ionic liquids: A cooperative result of anionic strong basicity and cationic hydrogen-bond donation. Chem. Eng. Sci. 2017, 173, 253–263. [Google Scholar] [CrossRef]
- Huang, Y.T.; Zhang, K.; Hu, X.M.; Wu, X.B. Hydrophobic Protic Ionic Liquids Tethered with Tertiary Amine Group for Highly Efficient and Selective Absorption of H2S from CO2. AIChE J. 2016, 62, 4480–4490. [Google Scholar] [CrossRef]
- Huang, K.; Cai, D.N.; Chen, Y.L.; Wu, Y.T.; Hu, X.B.; Zhang, Z.B. Thermodynamic Validation of 1-Alkyl-3-methylimidazolium Carboxylates as Task-Specific Ionic Liquids for H2S Absorption. AIChE J. 2012, 59, 2227–2235. [Google Scholar] [CrossRef]
- Motlagh, S.R.; Harun, R.; Biak, D.R.A.; Hussain, S.A.; Ghani, W.A.W.A.K.; Khezri, R.; Wilfred, C.D.; Elgharbawy, A.A.M. Screening of Suitable Ionic Liquids as Green Solvents for Extraction of Eicosapentaenoic Acid (EPA) from Microalgae Biomass Using COSMO-RS Model. Molecules 2019, 24, 713. [Google Scholar] [CrossRef]
S.No. | Ionic Liquid | Experimental Solubility, mol/kg | Predicted Solubility, mol/mol | Mol. Wt, Kg/mol | Predicted Solubility, mol/kg |
---|---|---|---|---|---|
1 | [hmim][BF4] | 0.2650 [35], 0.2480 [54] | 0.4114 | 0.2541 | 1.6191 |
2 | [hmim][TfA] | 0.2327 [35] | 0.4331 | 0.2803 | 1.5452 |
3 | [emim][Tf2N] | 0.1498 [35], 0.1431 [55] | 0.3782 | 0.3913 | 0.9664 |
4 | [bmim][TfO] | 0.1820 [35] | 0.4027 | 0.2883 | 1.3969 |
5 | [hmim][Tf2N] | 0.08940 [54] | 0.5400 | 0.4474 | 1.2069 |
6 | [bmim][BF4] | 0.3362 [43] | 0.4051 | 0.2260 | 1.7925 |
7 | [Hoemim][PF6] | 0.1660 [44] | 0.2675 | 0.2721 | 0.9831 |
8 | [Hoemim][TfO] | 0.1950 [44] | 0.3121 | 0.2762 | 1.1299 |
9 | [bmim][Cl] | 1.2595 [47] | 0.6500 | 0.1747 | 3.7213 |
10 | [bmim] [Tf2N] | 0.1550 [43] | 0.5400 | 0.4194 | 1.2877 |
11 | [omim] [PF6] | 0.0623 [56] | 0.3751 | 0.3403 | 1.1022 |
12 | [emim] [BF4] | 0.3170 [57] | 0.3937 | 0.1980 | 1.9886 |
13 | [omim] [BF4] | 0.2687 [58] | 0.4137 | 0.2821 | 1.4664 |
No. | Ionic Liquid | Selectivity |
---|---|---|
1 | [emim][Cl] | 5.6484 |
2 | [bmim][Cl] | 5.7878 |
3 | [hmim][Cl] | 5.3786 |
4 | [omim][Cl] | 4.8811 |
No. | Ionic Liquid | Ionic-Liquid Structure | Sigma Surface | Viscosity, mPa·s @ 298.15 K |
---|---|---|---|---|
1 | [bmim][FeCl4] | 21.81 | ||
2 | [bmim][CuCl3] | 23.53 | ||
3 | [bmim][NiCl3] | 26.30 | ||
4 | [bmim][CoCl3] | 23.25 |
Ionic Liquid | Pressure, bar | Solubility, mol/mol |
---|---|---|
[bmim][CoCl3] | 0.01 | 0.009138 |
1 | 0.577603 | |
2 | 0.82563 | |
[bmim][CuCl3] | 0.01 | 0.008719 |
1 | 0.571985 | |
2 | 0.825734 | |
[bmim][FeCl4] | 0.01 | 0.009416 |
1 | 0.592396 | |
2 | 0.836321 | |
[bmim][NiCl3] | 0.01 | 0.0112 |
1 | 0.610241 | |
2 | 0.835576 |
Ionic Liquid | Viscosity, mPa·s |
---|---|
[bmim][CoCl3] | 24795.4 |
[bmim][CuCl3] | 500.37 |
[bmim][FeCl4] | 26.65 |
[bmim][NiCl3] | 61524.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutalib, N.F.A.; Bustam, M.A.; Wirzal, M.D.H.; Idris, A. A Prediction for the Conversion Performance of H2S to Elemental Sulfur in an Ionic-Liquid-Incorporated Transition Metal Using COSMO-RS. Chemistry 2022, 4, 811-826. https://doi.org/10.3390/chemistry4030058
Mutalib NFA, Bustam MA, Wirzal MDH, Idris A. A Prediction for the Conversion Performance of H2S to Elemental Sulfur in an Ionic-Liquid-Incorporated Transition Metal Using COSMO-RS. Chemistry. 2022; 4(3):811-826. https://doi.org/10.3390/chemistry4030058
Chicago/Turabian StyleMutalib, Nor Fariza Abd, Mohamad Azmi Bustam, Mohd Dzul Hakim Wirzal, and Alamin Idris. 2022. "A Prediction for the Conversion Performance of H2S to Elemental Sulfur in an Ionic-Liquid-Incorporated Transition Metal Using COSMO-RS" Chemistry 4, no. 3: 811-826. https://doi.org/10.3390/chemistry4030058
APA StyleMutalib, N. F. A., Bustam, M. A., Wirzal, M. D. H., & Idris, A. (2022). A Prediction for the Conversion Performance of H2S to Elemental Sulfur in an Ionic-Liquid-Incorporated Transition Metal Using COSMO-RS. Chemistry, 4(3), 811-826. https://doi.org/10.3390/chemistry4030058