On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grill, L.; Hecht, S. Covalent On-Surface Polymerization. Nat. Chem. 2020, 12, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Lackinger, M. On-Surface Polymerization—A Versatile Synthetic Route to Two-Dimensional Polymers. Polym. Int. 2015, 64, 1073–1078. [Google Scholar] [CrossRef]
- Lindner, R.; Kühnle, A. On-Surface Reactions. ChemPhysChem 2015, 16, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Bieri, M.; Nguyen, M.T.; Gröning, O.; Cai, J.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C.A.; Passerone, D.; Kastler, M.; et al. Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. J. Am. Chem. Soc. 2010, 132, 16669–16676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Fan, Q.; Wang, T.; Kuttner, J.; Hilt, G.; Gottfried, J.M.; Zhu, J. The Role of the Substrate Structure in the On-Surface Synthesis of Organometallic and Covalent Oligophenylene Chains. Phys. Chem. Chem. Phys. 2016, 18, 20627–20634. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wu, X.; Song, S.; Telychko, M.; Lu, J. Substrate Induced Strain for On-Surface Transformation and Synthesis. Nanoscale 2020, 12, 7500–7508. [Google Scholar] [CrossRef]
- Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Controlling On-Surface Polymerization by Hierarchical and Substrate-Directed Growth. Nat. Chem. 2012, 4, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Fritton, M.; Duncan, D.A.; Deimel, P.S.; Rastgoo-Lahrood, A.; Allegretti, F.; Barth, J.V.; Heckl, W.M.; Björk, J.; Lackinger, M. The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces. J. Am. Chem. Soc. 2019, 141, 4824–4832. [Google Scholar] [CrossRef]
- Zhong, Q.; Ebeling, D.; Tschakert, J.; Gao, Y.; Bao, D.; Du, S.; Li, C.; Chi, L.; Schirmeisen, A. Symmetry Breakdown of 4,4″-Diamino-p-Terphenyl on a Cu (111) Surface by Lattice Mismatch. Nat. Commun. 2018, 9, 3277. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, C.; Han, Y.; Zhu, J.; Hieringer, W.; Kuttner, J.; Hilt, G.; Gottfried, J.M. Surface-Assisted Organic Synthesis of Hyperbenzene Nanotroughs. Angew. Chem. Int. Ed. 2013, 52, 4668–4672. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shang, J.; Wang, Y.; Wu, K.; Kuttner, J.; Hilt, G.; Hieringer, W.; Gottfried, J.M. On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles. ACS Nano 2017, 11, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Telychko, M.; Su, J.; Gallardo, A.; Gu, Y.; Mendieta-Moreno, J.I.; Qi, D.; Tadich, A.; Song, S.; Lyu, P.; Qiu, Z.; et al. Strain-Induced Isomerization in One-Dimensional Metal–Organic Chains. Angew. Chem. 2019, 131, 18764–18770. [Google Scholar] [CrossRef]
- Shiotari, A.; Nakae, T.; Iwata, K.; Mori, S.; Okujima, T.; Uno, H.; Sakaguchi, H.; Sugimoto, Y. Strain-Induced Skeletal Rearrangement of a Polycyclic Aromatic Hydrocarbon on a Copper Surface. Nat. Commun. 2017, 8, 16089. [Google Scholar] [CrossRef] [Green Version]
- Stetsovych, O.; Švec, M.; Vacek, J.; Chocholoušová, J.V.; Janík, A.; Rybáek, J.; Kosmider, K.; Stará, I.G.; Jelínek, P.; Starý, I. From Helical to Planar Chirality by On-Surface Chemistry. Nat. Chem. 2017, 9, 213–218. [Google Scholar] [CrossRef]
- Treier, M.; Pignedoli, C.A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Surface-Assisted Cyclodehydrogenation Provides a Synthetic Route towards Easily Processable and Chemically Tailored Nanographenes. Nat. Chem. 2011, 3, 61–67. [Google Scholar] [CrossRef]
- Bjork, J.; Stafstrom, S.; Hanke, F. Zipping up: Cooperativity Drives the Synthesis of Graphene Nanoribbons. J. Am. Chem. Soc. 2011, 133, 14884–14887. [Google Scholar] [CrossRef]
- Giessibl, F.J. High-Speed Force Sensor for Force Microscopy and Profilometry Utilizing a Quartz Tuning Fork. Appl. Phys. Lett. 1998, 73, 3956–3958. [Google Scholar] [CrossRef]
- Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Basagni, A.; Sedona, F.; Pignedoli, C.A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules–Oligomers–Nanowires–Graphene Nanoribbons: A Bottom-Up Stepwise On-Surface Covalent Synthesis Preserving Long-Range Order. J. Am. Chem. Soc. 2015, 137, 1802–1808. [Google Scholar] [CrossRef] [PubMed]
- Zojer, E.; Cornil, J.; Leising, G.; Brédas, J.L. Theoretical Investigation of the Geometric and Optical Properties of Neutral and Charged Oligophenylenes. Phys. Rev. B 1999, 59, 7957–7968. [Google Scholar] [CrossRef]
- Patera, L.L.; Queck, F.; Repp, J. Imaging Charge Localization in a Conjugated Oligophenylene. Phys. Rev. Lett. 2020, 125, 176803. [Google Scholar] [CrossRef]
- Vasseur, G.; Fagot-Revurat, Y.; Sicot, M.; Kierren, B.; Moreau, L.; Malterre, D.; Cardenas, L.; Galeotti, G.; Lipton-Duffin, J.; Rosei, F.; et al. Quasi One-Dimensional Band Dispersion and Surface Metallization in Long-Range Ordered Polymeric Wires. Nat. Commun. 2016, 7, 10235. [Google Scholar] [CrossRef] [Green Version]
- Di Giovannantonio, M.; Tomellini, M.; Lipton-Duffin, J.; Galeotti, G.; Ebrahimi, M.; Cossaro, A.; Verdini, A.; Kharche, N.; Meunier, V.; Vasseur, G.; et al. Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization. J. Am. Chem. Soc. 2016, 138, 16696–16702. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, F.; Pavliček, N.; Herranz-Lancho, C.; Ruben, M.; Repp, J. Characterization of a Surface Reaction by Means of Atomic Force Microscopy. J. Am. Chem. Soc. 2015, 137, 7424–7428. [Google Scholar] [CrossRef] [PubMed]
- Patera, L.L.; Zou, Z.; Dri, C.; Africh, C.; Repp, J.; Comelli, G. Imaging On-Surface Hierarchical Assembly of Chiral Supramolecular Networks. Phys. Chem. Chem. Phys. 2017, 19, 24605–24612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patera, L.L.; Liu, X.; Mosso, N.; Decurtins, S.; Liu, S.-X.; Repp, J. Crystallization of a Two-Dimensional Hydrogen-Bonded Molecular Assembly: Evolution of the Local Structure Resolved by Atomic Force Microscopy. Angew. Chem. Int. Ed. 2017, 56, 10786–10790. [Google Scholar] [CrossRef]
- Schuler, B.; Liu, W.; Tkatchenko, A.; Moll, N.; Meyer, G.; Mistry, A.; Fox, D.; Gross, L. Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy. Phys. Rev. Lett. 2013, 111, 106103. [Google Scholar] [CrossRef] [Green Version]
- Kawai, S.; Nishiuchi, T.; Kodama, T.; Spijker, P.; Pawlak, R.; Meier, T.; Tracey, J.; Kubo, T.; Meyer, E.; Foster, A.S. Direct Quantitative Measurement of the C==O⋅⋅⋅H–C Bond by Atomic Force Microscopy. Sci. Adv. 2017, 3, e1603258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, S.T. Conformers, Energetics and Basicity of 2, 2 ‘-Bipyridine. J. Am. Chem. Soc. 1996, 118, 10269–10274. [Google Scholar] [CrossRef]
- Göller, A.; Grummt, U.-W. Torsional Barriers in Biphenyl, 2, 2′-Bipyridine and 2-Phenylpyridine. Chem. Phys. Lett. 2000, 321, 399–405. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, Z.; Fei, X.; Zhao, W.; Zhang, R.; Lin, T.; Zhao, D.; Ju, H.; Xu, H.; Fan, J.; et al. Selective On-Surface Covalent Coupling Based on Metal-Organic Coordination Template. Nat. Commun. 2019, 10, 70. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patera, L.L.; Amler, J.; Repp, J. On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains. Chemistry 2022, 4, 112-117. https://doi.org/10.3390/chemistry4010009
Patera LL, Amler J, Repp J. On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains. Chemistry. 2022; 4(1):112-117. https://doi.org/10.3390/chemistry4010009
Chicago/Turabian StylePatera, Laerte L., Josef Amler, and Jascha Repp. 2022. "On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains" Chemistry 4, no. 1: 112-117. https://doi.org/10.3390/chemistry4010009
APA StylePatera, L. L., Amler, J., & Repp, J. (2022). On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains. Chemistry, 4(1), 112-117. https://doi.org/10.3390/chemistry4010009