Selective Proton-Mediated Transport by Electrogenic K+-Binding Macrocycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. General Synthetic Procedure
2.4. Lipid Bilayer Transport Experiments
2.4.1. LUV Preparation for HPTS Experiments
2.4.2. Cation Transport Experiments
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Sakai, N.; Gerard, D.; Matile, S. Electrostatics of Cell Membrane Recognition: Structure and Activity of Neutral and Cationic Rigid Push-Pull Rods in Isoelectric, Anionic, and Polarized Lipid Bilayer Membranes. J. Am. Chem. Soc. 2001, 123, 2517–2524. [Google Scholar] [CrossRef]
- Barboiu, M. Supramolecular Polymeric Macrocyclic Receptors—Hybrid Carrier vs. Channel Transporters in Bulk Liquid Membranes. J. Incl. Phenom. Macrocycl. Chem. 2004, 49, 133–137. [Google Scholar] [CrossRef]
- Otis, F.; Racine-Berthiaume, C.; Voyer, N. How Far Can a Sodium Ion Travel within a Lipid Bilayer? J. Am. Chem. Soc. 2011, 133, 6481–6483. [Google Scholar] [CrossRef]
- Otis, F.; Auger, M.; Voyer, N. Exploiting Peptide Nanostructures to Construct Functional Artificial Ion Channels. Acc. Chem. Res. 2013, 46, 2934–2943. [Google Scholar] [CrossRef]
- Weber, M.E.; Schlesinger, P.H.; Gokel, G.W. Dynamic Assessment of Bilayer Thickness by Varying Phospholipid and Hydraphile Synthetic Channel Chain Lengths. J. Am. Chem. Soc. 2005, 127, 636–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokel, G.W.; Negin, S. Synthetic membrane active amphiphiles. Adv. Drug Deliv. Rev. 2012, 64, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Shen, J.; Zeng, H. Combinatorial Evolution of Fast-Conducting Highly Selective K+-Channels via Modularly Tunable Directional Assembly of Crown Ethers. J. Am. Chem. Soc. 2017, 139, 12338–12341. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.E.A.; Crossley, M.J.; Turner, P.; Thordarson, P. Pyromellitamide Aggregates and Their Response to Anion Stimuli. J. Am. Chem. Soc. 2007, 129, 7155–7162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.P.; Li, Y.H.; Jiang, J.J.; van der Lee, A.; Dumitrescu, D.; Barboiu, M. Self-Assembled Columnar Triazole-Quartets—An example of synergetic H-bonding/Anion-π Channels. Angew. Chem. Int. Ed. 2019, 58, 12037–12042. [Google Scholar] [CrossRef] [PubMed]
- Barboiu, M.; Cerneaux, S.; Van der Lee, A.; Vaughan, G. Ion-driven ATP-pump by Self-Organized Hybrid Membrane Materials. J. Am. Chem. Soc. 2004, 126, 3545–3550. [Google Scholar] [CrossRef] [PubMed]
- Mihai, S.; Cazacu, A.; Arnal-Herault, C.; Nasr, G.; Meffre, A.; van der Lee, A.; Barboiu, M. Supramolecular self-organization in constitutional hybrid materials. New J. Chem. 2009, 33, 2335–2343. [Google Scholar] [CrossRef]
- Cazacu, A.; Tong, C.; van der Lee, A.; Fyles, T.M.; Barboiu, M. Columnar Self-Assembled Ureidocrown-ethers—An Example of Ion-channel Organization in Lipid Bilayers. J. Am. Chem. Soc. 2006, 128, 9541–9548. [Google Scholar] [CrossRef]
- Cazacu, A.; Legrand, Y.M.; Pasc, A.; Nasr, G.; Van der Lee, A.; Mahon, E.; Barboiu, M. Dynamic hybrid materials for constitutional selective membranes. Proc. Natl. Acad. Sci. USA 2009, 106, 8117–8122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilles, A.; Barboiu, M. Highly Selective Artificial K+ Channels: An Example of Selectivity- Induced Transmembrane Potential. J. Am. Chem. Soc. 2016, 138, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Barboiu, M.; Legrand, Y.M.; Petit, E.; Rotaru, A. Selective Artificial Cholesteryl Crown Ether K+-Channels. Angew. Chem. Int. Ed. 2015, 54, 14473–14477. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Gilles, A.; Kocsis, I.; Legrand, Y.M.; Petit, E.; Barboiu, M. Squalene Crown-Ether Self-assembled Conjugates—An example of highly selective artificial K+-channels. Chem. Eur. J. 2016, 22, 2158–2164. [Google Scholar] [CrossRef]
- Feng, W.X.; Sun, Z.; Zhang, Y.; Legrand, Y.M.; Petit, E.; Su, C.Y.; Barboiu, M. Bis-15-Crown-5-Ether-Pillar[5]arene K+-Responsive Channels. Org. Lett. 2017, 19, 1438–1441. [Google Scholar] [CrossRef]
- Schneider, S.; Licsandru, E.D.; Kocsis, I.; Gilles, A.; Dumitru, F.; Moulin, E.; Tan, J.J.; Lehn, J.M.; Giuseppone, N.; Barboiu, M. Columnar Self-Assemblies of Triarylamines as Scaffolds for Artificial Biomimetic Channels for Ion and for Water Transport. J. Am. Chem. Soc. 2017, 139, 3721–3727. [Google Scholar] [CrossRef]
- Spooner, M.J.; Gale, P.A. Anion transport across varying lipid membranes—The effect of lipophilicity. Chem. Commun. 2015, 51, 4883–4886. [Google Scholar] [CrossRef] [Green Version]
- Knight, N.J.; Hernando, E.; Haynes, C.J.E.; Busschaert, N.; Clarke, H.J.; Takimoto, K.; Garcia-Valverde, M.; Frey, J.G.; Quesada, R.; Gale, P.A. QSAR analysis of substituent effects on tambjamine anion transporters. Chem. Sci. 2016, 7, 1600–1608. [Google Scholar] [CrossRef] [Green Version]
- Saggiomo, V.; Otto, S.; Marques, I.; Felix, V.; Torroba, T.; Quesada, R. The role of lipophilicity in transmembrane anion transport. Chem. Commun. 2012, 48, 5274–5276. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, L.Q.; Chen, J.X.; Zhou, C.Q.; Chen, W.H. Does lipophilicity affect the effectiveness of a transmembrane anion transporter? Insight from squaramido-functionalized bis(choloyl) conjugates. Org. Biomol. Chem. 2015, 13, 11761–11769. [Google Scholar] [CrossRef] [PubMed]
- Berezin, S.K.; Davis, J.T. Catechols as Membrane Anion Transporters. J. Am. Chem. Soc. 2009, 131, 2458–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.H.; Zheng, S.P.; Legrand, Y.M.; Gilles, A.; Van der Lee, A.; Barboiu, M. Structure-driven selection of adaptive transmembrane Na+ carriers or K+ channels. Angew. Chem. Int. Ed. 2018, 57, 10520–10524. [Google Scholar] [CrossRef] [PubMed]
- Matile, S.; Sakai, N. Analytical Methods in Supramolecular Chemistry; Schalley, C.A., Ed.; Wiley-VCH: Weinheim, Germany, 2007; pp. 381–418. [Google Scholar]
- Bhosale, S.; Matile, S. A Simple Method to Identify Supramolecules in Action: Hill Coefficients for Exergonic Self-Assembly. Chirality 2006, 18, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Valkenier, H.; Haynes, C.J.E.; Herniman, J.; Gale, P.A.; Davis, A.P. Lipophilic balance—A new design principle for transmembrane anion carriers. Chem. Sci. 2014, 5, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Judd, L.W.; Howe, E.N.W.; Withecombe, A.M.; Soto-Cerrato, V.; Li, H.; Busschaert, N.; Valkenier, H.; Pérez-Tomás, R.; Sheppard, D.N.; et al. Nonprotonophoric Electrogenic Cl− Transport Mediated by Valinomycin-like Carriers. Chem 2016, 1, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Varnek, A.; Gaudin, C.; Marcou, G.; Baskin, I.; Pandey, A.K.; Tetko, I.V. Inductive Transfer of Knowledge: Application of Multi-Task Learning and Feature Net Approaches to Model Tissue-Air Partition Coefficients. J. Chem. Inf. Model. 2009, 49, 133–144. [Google Scholar] [CrossRef]
Compound | 1 | r2 | 3 |
---|---|---|---|
Ke | 19.3 | 15.3 | 14.6 |
ρ a | 0.23 | 0.10 | 0.20 |
Ke error (%) | 2.64 | 3.89 | 2.30 |
K+ | K+/FCCP | Na+ | Na+/FCCP | |||||
---|---|---|---|---|---|---|---|---|
EC50 a (mol%) | nb | EC50 a (mol%) | n | EC50 (mol%) | n | EC50 (mol%) | n | |
1 | 4.1 | 2.4 | 1.9 | 2.2 | 10.9 | 5.3 | 7.1 | 3.8 |
r2 | / | / | 3.0 | 3.2 | / | / | 10.7 | 4.1 |
s2 | 6.4 | 3.3 | 3.0 | 2.9 | 14.9 | 3.4 | 11.2 | 4.6 |
3 | 8.3 | 3.6 | 1.8 | 2.9 | 15.2 | 5.1 | 10.1 | 3.8 |
Compounds | logP |
---|---|
1 | 3.66 |
r2 | 3.64 |
s2 | 3.64 |
3 | 3.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-H.; Zheng, S.-P.; Wang, D.; Barboiu, M. Selective Proton-Mediated Transport by Electrogenic K+-Binding Macrocycles. Chemistry 2020, 2, 11-21. https://doi.org/10.3390/chemistry2010003
Li Y-H, Zheng S-P, Wang D, Barboiu M. Selective Proton-Mediated Transport by Electrogenic K+-Binding Macrocycles. Chemistry. 2020; 2(1):11-21. https://doi.org/10.3390/chemistry2010003
Chicago/Turabian StyleLi, Yu-Hao, Shao-Ping Zheng, Dawei Wang, and Mihail Barboiu. 2020. "Selective Proton-Mediated Transport by Electrogenic K+-Binding Macrocycles" Chemistry 2, no. 1: 11-21. https://doi.org/10.3390/chemistry2010003
APA StyleLi, Y. -H., Zheng, S. -P., Wang, D., & Barboiu, M. (2020). Selective Proton-Mediated Transport by Electrogenic K+-Binding Macrocycles. Chemistry, 2(1), 11-21. https://doi.org/10.3390/chemistry2010003