Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

J. Nanotheranostics, Volume 4, Issue 4 (December 2023) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 3191 KiB  
Article
Efficacy of 15 nm Gold Nanoparticles for Image-Guided Gliosarcoma Radiotherapy
by Elette Engels, Michael Lerch, Stéphanie Corde and Moeava Tehei
J. Nanotheranostics 2023, 4(4), 480-495; https://doi.org/10.3390/jnt4040021 - 26 Oct 2023
Cited by 1 | Viewed by 1521
Abstract
Targeted brain cancer treatments are sorely needed to improve long-term prognosis, particularly for gliosarcoma and glioblastoma patients. Gold nanoparticles (GNPs) have unique properties including high atomic number, biocompatibility, and small size for cancer cell internalization. GNPs are consequently an ideal candidate for improved [...] Read more.
Targeted brain cancer treatments are sorely needed to improve long-term prognosis, particularly for gliosarcoma and glioblastoma patients. Gold nanoparticles (GNPs) have unique properties including high atomic number, biocompatibility, and small size for cancer cell internalization. GNPs are consequently an ideal candidate for improved cancer targeting using image-guided radiotherapy. This work investigated 15 nm AuroVistTM GNPs for image-guided gliosarcoma radiotherapy and identified optimum GNP concentrations. The GNPs were found to be 15–20 nm using optical surface plasmon resonance absorption, with a (41.3 ± 0.3) nm hydrodynamic diameter. Confocal imaging showed that 50–500 µg/mL of the GNPs was well-internalized into the 9L cells within 24–48 h. γ-H2AX assays showed that 50–500 µg/mL of the GNPs radiosensitized the 9L cells irradiated with 125 and 150 kVp X-rays. However, only 500 µg/mL of the GNPs produced significant long-term dose enhancement with 150 kVp X-rays (with a sensitization enhancement ratio at 10% survival of 1.43, and 1.13 with 50 µg/mL) using clonogenic assay. CT imaging of the GNPs in the 9L tumors in Fischer rats further showed that GNP concentrations above 500 µg/mL were required to distinguish the tumor from the brain, and the GNPs were detected 48 h after injection. These promising results indicate that the GNPs can be used for selective gliosarcoma treatment with image-guided X-ray radiotherapy at concentrations above 500 µg/mL. Full article
(This article belongs to the Special Issue Emerging Strategies in Nanomedicine)
Show Figures

Graphical abstract

17 pages, 727 KiB  
Review
Enhancing Antibody Exposure in the Central Nervous System: Mechanisms of Uptake, Clearance, and Strategies for Improved Brain Delivery
by Kelly Schwinghamer and Teruna J. Siahaan
J. Nanotheranostics 2023, 4(4), 463-479; https://doi.org/10.3390/jnt4040020 - 2 Oct 2023
Cited by 1 | Viewed by 2672
Abstract
Antibodies (mAbs) are attractive molecules for their application as a diagnostic and therapeutic agent for diseases of the central nervous system (CNS). mAbs can be generated to have high affinity and specificity to target molecules in the CNS. Unfortunately, only a very small [...] Read more.
Antibodies (mAbs) are attractive molecules for their application as a diagnostic and therapeutic agent for diseases of the central nervous system (CNS). mAbs can be generated to have high affinity and specificity to target molecules in the CNS. Unfortunately, only a very small number of mAbs have been specifically developed and approved for neurological indications. This is primarily attributed to their low exposure within the CNS, hindering their ability to reach and effectively engage their potential targets in the brain. This review discusses aspects of various barriers such as the blood–brain barrier (BBB) and blood–cerebrospinal fluid (CSF) barrier (BCSFB) that regulate the entry and clearance of mAbs into and from the brain. The roles of the glymphatic system on brain exposure and clearance are being described. We also discuss the proposed mechanisms of the uptake of mAbs into the brain and for clearance. Finally, several methods of enhancing the exposure of mAbs in the CNS were discussed, including receptor-mediated transcytosis, osmotic BBB opening, focused ultrasound (FUS), BBB-modulating peptides, and enhancement of mAb brain retention. Full article
(This article belongs to the Special Issue Exclusive Papers of the Editorial Board Members)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop