Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies
Abstract
:1. Introduction
2. Optical Imaging and Phototherapy
2.1. Theranostic Gold Nanostructures
2.2. Theranostic Carbon Nanostructures
2.3. Theranostic Upconversion Nanoparticles (UCNPs)
2.4. Theranostic 2D Nanostructures
3. MRI and Phototherapy
3.1. Nanophototheranostics Using Gadolinium MRI
3.2. Iron Oxide Nanoparticles with Photosensitizers
3.3. Dopamine-Based Nanoparticles for Multimodal Theranostics
4. Radio Imaging-Guided Phototherapy
5. Photodynamic Therapy (PDT) with In Situ Oxygen Generation
6. Toxicological Aspects of Nanoparticles
7. Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ehlerding, E.B.; Cai, W. Theranostic nanoparticles. J. Nucl. Med. 2014, 55, 1919–1922. [Google Scholar] [CrossRef] [Green Version]
- Terreno, E.; Uggeri, F.; Aime, S. Image guided therapy: The advent of theranostic agents. J. Cont. Rel. 2012, 161, 328–337. [Google Scholar] [CrossRef]
- Chen, F.; Hableel, G.; Zhao, E.R.; Jokerst, J.V. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J. Colloid Interface Sci. 2018, 521, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.P.; Cawthorne, C.; Archibald, S.J. Multimodal nanoparticle imaging agents: Design and applications. Philos. Trans. R. Soc. 2017, 375, 20170261. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.G.; Kim, J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Key, J.; Leary, J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. [Google Scholar]
- Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41, 2656–2672. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef]
- Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Zhi, D.; Yang, T.; O’Hagan, J.; Zhang, S.; Donnelly, R.F. Photothermal therapy. J. Cont. Rel. 2020, 325, 52–71. [Google Scholar] [CrossRef]
- Hou, Y.J.; Yang, X.X.; Liu, R.Q.; Zhao, D.; Guo, C.X.; Zhu, A.C.; Wen, M.N.; Liu, Z.; Qu, G.F.; Meng, H.X. Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles. Int. J. Nanomed. 2020, 15, 6827–6838. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.Y.; Gao, J.; Wang, Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1560. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Larue, L.; Myrzakhmetov, B.; Ben-Mihoub, A.; Moussaron, A.; Thomas, N.; Arnoux, P.; Baros, F.; Vanderesse, R.; Acherar, S.; Frochot, C. Fighting Hypoxia to Improve PDT. Pharmaceuticals 2019, 12, 163. [Google Scholar] [CrossRef] [Green Version]
- Çeşmeli, S.; Biray, A.C. Application of titanium dioxide (TiO(2)) nanoparticles in cancer therapies. J. Drug Target. 2019, 27, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Tao, Y.; Pang, Y.; Li, X.; Jiang, G.; Liu, Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int. J. Cancer 2018, 143, 3050–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.; Xu, S.; Liu, B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Adv. Mater. 2018, 30, e1801350. [Google Scholar] [CrossRef]
- Guo, L.; Wong, M.S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater. 2014, 26, 5400–5428. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, C.; Lin, J. Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. Nanomedicine 2015, 10, 2573–2591. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Thorek, D.L.; Grimm, J. Cerenkov imaging. Adv. Cancer Res. 2014, 124, 213–234. [Google Scholar]
- Melancon, M.P.; Zhou, M.; Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 2011, 44, 947–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhao, Y. Applications of Light-Responsive Systems for Cancer Theranostics. ACS Appl. Mater. Interfaces 2018, 10, 21021–21034. [Google Scholar] [CrossRef]
- Vankayala, R.; Hwang, K.C. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv. Mater. 2018, 30, e1706320. [Google Scholar] [CrossRef] [PubMed]
- Cabuzu, D.; Cirja, A.; Puiu, R.; Grumezescu, A.M. Biomedical applications of gold nanoparticles. Curr. Top. Med. Chem. 2015, 15, 1605–1613. [Google Scholar] [CrossRef]
- Liu, Y.; Crawford, B.M.; Vo-Dinh, T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy 2018, 10, 1175–1188. [Google Scholar] [CrossRef]
- Kohout, C.; Santi, C.; Polito, L. Anisotropic Gold Nanoparticles in Biomedical Applications. Int. J. Mol. Sci. 2018, 19, 3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, S.; Clare, S.E.; Halas, N.J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Melancon, M.P.; Xiong, C.; Huang, Q.; Elliott, A.; Song, S.; Zhang, R.; Flores 2nd, L.G.; Gelovani, J.G.; Wang, L.V.; et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011, 71, 6116–6121. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Wang, S.; Huang, P.; Wang, Z.; Chen, S.; Niu, G.; Li, W.; He, J.; Cui, D.; Lu, G.; et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Liu, Y.; Zhao, J.; Zhou, M.; Bouchard, R.B.; Mitcham, T.; Wallace, M.; Stafford, J.; Li, C.; Gupta, S.; et al. In Vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J. Cont. Rel. 2013, 172, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Zhong, Y.; Du, M.; Liu, Q.; Fan, Z.; Dai, F.; Zhang, X. Theranostic self-assembly structure of gold nanoparticles for NIR photothermal therapy and X-ray computed tomography imaging. Theranostics 2014, 4, 904–918. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Peng, D.; Hao, H.; Hu, J.; Wang, D.; Wang, K.; Liu, J.; Guo, X.; Wei, Y.; Gao, W. Thermally Triggered in Situ Assembly of Gold Nanoparticles for Cancer Multimodal Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 10453–10460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, J.; Huang, F.; Yang, L.; Ren, C.; Ma, L.; Zhang, W.; Dong, H.; Liu, J.; Liu, J. Acid-Triggered in Situ Aggregation of Gold Nanoparticles for Multimodal Tumor Imaging and Photothermal Therapy. ACS Biomater. Sci. Eng. 2019, 5, 1589–1601. [Google Scholar] [CrossRef]
- Sharma, P.; Mehra, N.K.; Jain, K.; Jain, N.K. Biomedical Applications of Carbon Nanotubes: A Critical Review. Curr. Drug Deliv. 2016, 13, 796–817. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell Physiol. 2018, 234, 298–319. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.P.; Zhou, B.; Lin, Z.; Liang, H.; Shen, X.C. Recent Advances in Carbon Nanomaterials for Cancer Phototherapy. Chemistry 2019, 25, 3993–4004. [Google Scholar] [CrossRef]
- Krishna, V.; Singh, A.; Sharma, P.; Iwakuma, N.; Wang, Q.; Zhang, Q.; Knapik, J.; Jiang, H.; Grobmyer, S.R.; Koopman, B.; et al. Polyhydroxy fullerenes for non-invasive cancer imaging and therapy. Small 2010, 6, 2236–2241. [Google Scholar] [CrossRef]
- Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, J.; Li, W.; Chen, R.; Zhang, Z.; Zhang, W.; Tang, Y.; Chen, X.; Liu, G.; Lee, C.S. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 2017, 7, 3007–3020. [Google Scholar] [CrossRef]
- Qian, M.; Du, Y.; Wang, S.; Li, C.; Jiang, H.; Shi, W.; Chen, J.; Wang, Y.; Wagner, E.; Huang, R. Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging-Guided Photothermal Therapy of Glioma. ACS Appl. Mater. Interfaces 2018, 10, 4031–4040. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Pan, Z.; Chen, Y.; Fan, Z.; Tian, H.; Zhou, S.; Zhang, Y.; Shang, J.; Jiang, B.; et al. Multifunctional Nanosystem Based on Graphene Oxide for Synergistic Multistage Tumor-Targeting and Combined Chemo-Photothermal Therapy. Mol. Pharm. 2019, 16, 1982–1998. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, C.; Prasad, P.N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 2013, 46, 1474–1786. [Google Scholar] [CrossRef]
- Qiu, H.; Tan, M.; Ohulchanskyy, T.Y.; Lovell, J.F.; Chen, G. Recent Progress in Upconversion Photodynamic Therapy. Nanomaterials 2018, 8, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaydukov, E.V.; Mironova, K.E.; Semchishen, V.A.; Generalova, A.N.; Nechaev, A.V.; Khochenkov, D.A.; Stepanova, E.V.; Lebedev, O.I.; Zvyagin, A.V.; Deyev, S.M.; et al. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016, 6, 35103. [Google Scholar] [CrossRef] [Green Version]
- Guryev, E.L.; Volodina, N.O.; Shilyagina, N.Y.; Gudkov, S.V.; Balalaeva, I.V.; Volovetskiy, A.B.; Lyubeshkin, A.V.; Sen’, A.V.; Ermilov, S.A.; Vodeneev, V.A.; et al. Radioactive (90Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 9690–9695. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.C.; Vijayaraghavan, P.; Chiang, W.H.; Chen, H.H.; Liu, T.I.; Shen, M.Y.; Omoto, A.; Kamimura, M.; Soga, K.; Chiu, H.C. Targeted Delivery of Functionalized Upconversion Nanoparticles for Externally Triggered Photothermal/Photodynamic Therapies of Brain Glioblastoma. Theranostics 2018, 8, 1435–1448. [Google Scholar] [CrossRef]
- Tang, M.; Zhu, X.; Zhang, Y.; Zhang, Z.; Zhang, Z.; Mei, Q.; Zhang, J.; Wu, M.; Liu, J.; Zhang, Y. Near-Infrared Excited Orthogonal Emissive Upconversion Nanoparticles for Imaging-Guided On-Demand Therapy. ACS Nano 2019, 13, 10405–10418. [Google Scholar] [CrossRef]
- Zuo, J.; Tu, L.; Li, Q.; Feng, Y.; Que, I.; Zhang, Y.; Liu, X.; Xue, B.; Cruz, L.J.; Chang, Y.; et al. Near Infrared Light Sensitive Ultraviolet-Blue Nanophotoswitch for Imaging-Guided "Off-On" Therapy. ACS Nano 2018, 12, 3217–3225. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. Adv. Mater. 2020, 32, 1902333. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wen, L.; Zeng, J.; Wang, Y.; Sun, Q.; Deng, L.; Zhao, C.; Li, Z. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 2016, 91, 81–89. [Google Scholar] [CrossRef]
- Huang, J.; He, B.; Zhang, Z.; Li, Y.; Kang, M.; Wang, Y.; Li, K.; Wang, D.; Tang, B.Z. Aggregation-Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics. Adv. Mater. 2020, 32, 2003382. [Google Scholar] [CrossRef]
- Bai, J.; Jia, X.; Ruan, Y.; Wang, C.; Jiang, Z. Photosensitizer-Conjugated Bi2Te3 Nanosheets as Theranostic Agent for Synergistic Photothermal and Photodynamic Therapy. Inorg. Chem. 2018, 57, 10180–10188. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Chen, Z.; Zhang, F.; Wang, Q.; Guo, W.; Wang, K.; Lin, H.; Qu, F. Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials 2019, 217, 119282. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, Y.; Shi, J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018, 5, 1800518. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Wang, Y.; Gao, S.; Chen, Y.; Shi, J. Theranostic 2D Tantalum Carbide (MXene). Adv. Mater. 2017, 30, 1703284. [Google Scholar] [CrossRef]
- Han, X.; Jing, X.; Yang, D.; Lin, H.; Wang, Z.; Ran, H.; Li, P. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 2018, 8, 4491–4508. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 2012, 33, 5363–5375. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine 2017, 12, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, N.; Sharma, S.; Parul; Verma, A.K.; Roy, I.; Sen, T. Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines 2021, 9, 288. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qiu, Y.; Ding, D.; Lin, H.; Sun, W.; Wang, G.D.; Huang, W.; Zhang, W.; Lee, D.; Liu, G.; et al. Gadolinium-Encapsulated Graphene Carbon Nanotheranostics for Imaging-Guided Photodynamic Therapy. Adv. Mater. 2018, 30, e1802748. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; et al. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. Theranostics 2019, 9, 4168–4181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shen, R.; Bao, L.; Wang, C.; Yuan, H. Chitosan derived glycolipid nanoparticles for magnetic resonance imaging guided photodynamic therapy of cancer. Carbohydr. Polym. 2020, 245, 116509. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Luo, L.; Feng, Y.; Qiu, Y.; Shi, C.; Meng, S.; Chen, X.; Chen, H. Gadolinium-Rose Bengal Coordination Polymer Nanodots for MR-/Fluorescence-Image-Guided Radiation and Photodynamic Therapy. Adv. Mater. 2020, 32, e2000377. [Google Scholar] [CrossRef]
- Xu, D.; Baidya, A.; Deng, K.; Li, Y.S.; Wu, B.; Xu, H.B. Multifunctional nanoparticle PEG-Ce6-Gd for MRI-guided photodynamic therapy. Oncol. Rep. 2021, 45, 547–556. [Google Scholar] [CrossRef]
- Sharma, S.; Lamichhane, N.; Parul; Sen, T.; Roy, I. Iron oxide nanoparticles conjugated with organic optical probes for in vivo diagnostic and therapeutic applications. Nanomedicine 2021, 16, 953–962. [Google Scholar] [CrossRef]
- Kopelman, R.; Koo, Y.E.; Philbert, M.; Moffat, B.A.; Reddy, R.; McConville, P.; Hall, D.E.; Chenevert, T.L.; Bhojani, M.S.; Buck, S.M.; et al. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Magn. Mater. 2005, 293, 404–410. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.L.; Yang, X.X.; Huang, P.; Zhou, X.P.; Du, X.X. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology 2009, 20, 135102. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.H.; Chen, Y.; Wang, M.M.; Wang, X.S.; Yin, X.B. Fluorescence and magnetic resonance dual-modality imaging-guided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal organic framework nanocomposites. Sci. Rep. 2017, 7, 44153. [Google Scholar] [CrossRef] [Green Version]
- Tomitaka, A.; Takemura, Y. Magnetic Relaxation of Intracellular Magnetic Nanoparticles for Hyperthermia. Crit. Rev. Biomed. Eng. 2019, 47, 489–494. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, J.; Lee, J.Y.; Matsuda, S.; Hideshima, S.; Mori, Y.; Osaka, T.; Na, K. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Nanoscale 2016, 8, 11625–11634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Shen, H.; Yang, T.; Wang, L.; Fu, H.; Chen, H.; Zhang, Z. Indocyanine Green Loaded Magnetic Carbon Nanoparticles for Near Infrared Fluorescence/Magnetic Resonance Dual-Modal Imaging and Photothermal Therapy of Tumor. ACS Appl. Mater. Interfaces 2017, 9, 9484–9495. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, H.; Zhou, J.; Xu, P.; Wang, C.; Shi, R.; Wang, H.; Wang, H.; Guo, Z.; Chen, Q. In Situ One-Pot Synthesis of MOF-Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy. Adv. Sci. 2018, 5, 1800287. [Google Scholar] [CrossRef]
- Lv, R.; Yang, P.; Chen, G.; Gai, S.; Xu, J.; Prasad, P.N. Dopamine-mediated photothermal theranostics combined with upconversion platform under near infrared light. Sci. Rep. 2017, 7, 13562. [Google Scholar] [CrossRef]
- Pu, Y.; Zhu, Y.; Qiao, Z.; Xin, N.; Chen, S.; Sun, J.; Jin, R.; Nie, Y.; Fan, H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J. Mater. Chem. 2021, 9, 1846–1857. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, Y.; Wei, C.; Deng, Y.; Chen, H.; Shen, J.; Ke, H. Biomineralized iron oxide–polydopamine hybrid nanodots for contrast-enhanced T1-weighted magnetic resonance imaging and photothermal tumor ablation. J. Mater. Chem. 2021, 9, 1781. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhao, J.; Conti, P.S.; Chen, K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 2014, 4, 290–306. [Google Scholar] [CrossRef] [Green Version]
- Pratt, E.C.; Shaffer, T.M.; Grimm, J. Nanoparticles and radiotracers: Advances toward radionanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 872–890. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Welch, M.J. Nanoparticles labeled with positron emitting nuclides: Advantages, methods, and applications. Bioconjug. Chem. 2012, 23, 671–682. [Google Scholar] [CrossRef]
- Cai, W.; Fan, G.; Zhou, H.; Chen, L.; Ge, J.; Huang, B.; Zhou, D.; Zeng, J.; Miao, Q.; Hu, C. Self-Assembled Hybrid Nanocomposites for Multimodal Imaging-Guided Photothermal Therapy of Lymph Node Metastasis. ACS Appl. Mater. Interfaces 2020, 12, 49407–49415. [Google Scholar] [CrossRef] [PubMed]
- Rong, P.; Yang, K.; Srivastan, A.; Kiesewetter, D.O.; Yue, X.; Wang, F.; Nie, L.; Bhirde, A.; Wang, Z.; Liu, Z.; et al. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 2014, 4, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Kamkaew, A.; Sun, H.; Jiang, D.; Valdovinos, H.F.; Gong, H.; England, C.G.; Goel, S.; Barnhart, T.E.; Cai, W. Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano 2016, 10, 7721–7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamkaew, A.; Cheng, L.; Goel, S.; Valdovinos, H.F.; Barnhart, T.E.; Liu, Z.; Cai, W. Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 26630–26637. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; Ferreira, C.A.; Chen, F.; Ellison, P.A.; Siamof, C.M.; Barnhart, T.E.; Cai, W. Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Adv. Mater. 2018, 30, 1704367. [Google Scholar] [CrossRef]
- Kotagiri, N.; Sudlow, G.P.; Akers, W.J.; Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol. 2015, 10, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Reed, N.A.; Raliya, R.; Tang, R.; Xu, B.; Mixdorf, M.; Achilefu, S.; Biswas, P. Electrospray Functionalization of Titanium Dioxide Nanoparticles with Transferrin for Cerenkov Radiation Induced Cancer Therapy. ACS Appl. Biomater. 2019, 2, 1141–1147. [Google Scholar] [CrossRef]
- Cormode, D.P.; Gao, L.; Koo, H. Emerging Biomedical Applications of Enzyme-Like Catalytic Nanomaterials. Trends Biotechnol. 2018, 36, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.R.; Chen, L.J.; Qu, Y.; Peng, J.R.; Chu, B.Y.; Shi, K.; Hao, Y.; Zhong, L.; Wang, M.Y.; Qian, Z.Y. Oxygen-generating Hybrid Polymeric Nanoparticles with Encapsulated Doxorubicin and Chlorin e6 for Trimodal Imaging-Guided Combined Chemo-Photodynamic Therapy. Theranostics 2018, 8, 1558–1574. [Google Scholar] [CrossRef]
- Gulzar, A.; Wang, Z.; He, F.; Yang, D.; Zhang, F.; Gai, S.; Yang, P. An 808 nm Light-Sensitized Upconversion Nanoplatform for Multimodal Imaging and Efficient Cancer Therapy. Inorg. Chem. 2020, 59, 4909–4923. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, D.; Ma, P.; Chen, Y.; Wu, Y.; Hou, Z.; Dai, Y.; Zhao, J.; Sui, C.; Lin, J. Multifunctional Upconversion Mesoporous Silica Nanostructures for Dual Modal Imaging and In Vivo Drug Delivery. Small 2013, 9, 4150–4159. [Google Scholar] [CrossRef]
- Guller, A.; Generalova, A.; Petersen, E.; Nechaev, A.; Trusova, I.; Landyshev, N.; Nadort, A.; Grebenik, E.; Deyev, S.; Shekhter, A.; et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015, 8, 1546–1562. [Google Scholar] [CrossRef]
- Maeda, H. Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chem. 2010, 21, 797–802. [Google Scholar] [CrossRef]
- Kolosnjaj-Tabi, J.; Javed, Y.; Lartigue, L.; Volatron, J.; Elgrabli, D.; Marangon, I.; Pugliese, G.; Caron, B.; Figuerola, A.; Luciani, N.; et al. The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano 2015, 9, 7925–7939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikitin, M.P.; Zelepukin, I.V.; Shipunova, V.O.; Sokolov, I.L.; Deyev, S.M.; Nikitin, P.I. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat. Biomed. Eng. 2020, 4, 717–731. [Google Scholar] [CrossRef]
- Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319–327. [Google Scholar] [CrossRef]
- Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012, 8, 1167–1181. [Google Scholar] [CrossRef]
- He, H.; Liu, L.; Morin, E.E.; Liu, M.; Schwendeman, A. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. Acc. Chem. Res. 2019, 52, 2445–2461. [Google Scholar] [CrossRef]
Nanostructure | Added Agent/s | Disease Model | Procedure (Including Wavelength of Activating Light) | Ref. |
---|---|---|---|---|
Theranostics Involving Gold Nanostructures | ||||
Hollow gold nanospheres | Integrin for targeting | Orthotopic glioma (U87) tumor | PAI-guided PTT (NIR laser) | [31] |
Gold vesicles (assembled gold nanoparticles) | Photosensitizer chlorin e6 | Subcutaneous breast (MDA-MB-49) tumor | Trimodal (NIR fluorescence, thermal, and PAI)-guided bimodal phototherapy (PTT and PDT, using 671 nm laser) | [32] |
PEGylated hollow gold nanoshells | Drug doxorubicin | Subcutaneous breast (4T1) tumor | Fluorescence and PAI-guided doxorubicin release monitoring and PTT (NIR laser) | [33] |
Gold nanoassemblies | - | Subcutaneous breast (MCF-7) tumor | X-ray CT and thermal image- guided PTT (808-nm laser) | [34] |
Gold nanoassemblies | Thermosensitive elastin-like polypeptide (ELP) | Subcutaneous melanoma (C8161) tumor | PTT/PAI/X-ray CT image guided PTT (808-nm laser) | [35] |
Gold nanoassemblies | Peptide | Subcutaneous breast (MCF-7) tumor | CT and PA image-guided PTT (808-nm laser) | [36] |
Theranostics Involving Carbon-Based Nanostructures | ||||
Chitosan nanoparticles encapsulating Polyhyroxy Fullerenes | - | Subcutaneous breast (BT474) tumor | PA image-guided PTT (785-nm laser) | [41] |
Graphene Quantum dots | - | Subcutaneous breast (MDA MB-231) tumor | Photoluminescence-guided PDT (637-nm laser) | [42] |
Silica nanoparticles carrier of carbon nanoparticles | Drug doxorubicin | Subcutaneous lung (A549) tumor | PAI-chemo-PTT (808-nm laser) | [43] |
Carbon nanodots | - | Orthotopic glioma (U87) tumors | NIRF /PA imaging-guided PTT (808-nm laser) | [44] |
GO nanosheet | Fluorophore DiR, drug methotrexate | Subcutaneous cervical (HeLa) tumor | NIRF-guided synergistic chemo-PTT (808-nm laser) | [45] |
Theranostics Involving Upconversion Nanoparticles (UCNPs) | ||||
Upconversion nanoparticles | Tumor-targeting peptide angiopep-2, photothermal agent IR-780, photosensitizer mTHPC | Orthotopic GBM (ALTS1C1) tumor | Optical image-guided combination phototherapy (PTT; 808-nm laser and PDT; 980-nm laser) | [50] |
Upconversion nanoparticles | Photosensitizer zinc phthalocyanine (ZnPc) | Subcutaneous lung (A-549) tumor | Optical image (808-nm)-guided PDT (980-nm laser) | [51] |
Upconversion nanoparticles@TiO2 | Photocatalyst (TiO2) | Subcutaneous lung (C57/6J) tumor | Optical image (800-nm)-guided PDT (980-nm laser) | [52] |
Theranostics Involving 2-Dimensional Nanostructures | ||||
Black phosphorous (BP) | PEG | Subcutaneous breast (4T1) tumor | PA image- guided PTT (808-nm laser) | [54] |
Black phosphorous (BP) | AIE photosensitizer TTPy | Subcutaneous breast (4T1) tumor | Optical image- guided combined PDT (white light) and PTT (808-nm laser) | [55] |
Bi2Te3 nanosheets | Photosensitizer methylene blue | Subcutaneous squamous cell carcinoma (U14) tumor | Optical image- guided combined PDT (650-nm laser) and PTT (808- nm laser) | [56] |
Bi2Se3/MoSe2/Bi2Se3 sandwich nanoheterostructures | Drug doxorubicin | Subcutaneous squamous cell carcinoma (U14) tumor | Dual modal (photothermal and CT) image- guided combined PDT and PTT (both with 808-nm laser) | [57] |
Ta4C3 MXene | — | Subcutaneous breast (4T1) tumor | Dual modal (photoacoustic and CT) image-guided PTT (808-nm laser) | [58] |
Mesoporous silica-coated Nb2C MXene | Drug cetanecyltrimethylammonium chloride (CTAC), PEG and cyclic arginine-glycine-aspartic pentapeptide c(RGDyC) | subcuta-neous neuroglioma (U87) tumor | Photoacoustic image-guided PTT (1064-nm laser) | [59] |
Theranostics Involving Gadolinium-Containing Nanostructures | ||||
Gadolinium-encapsulated graphene carbon (Gd@GCNs) | Subcutaneous head-and-neck (SCC-7) tumor | Fluorescence and T1 MR image-guided PDT (LED light (15 mW cm-2) | [64] | |
Gadolinium-chelated semiconducting conjugated polymers (CPs) | Thiadiazoloquinoxaline (TQ) and fluorene (F) | Subcutaneous breast (4T1) tumor | Tri-mode PA/NIR-II/T1-MR image-guided PTT (808-nmlaser) | [65] |
Chitosan–octadecanoic acid co-polymer nanomicelles | Photosensitizer chlorin e6 and gadopentetic acid (Gd-DTPA) | Subcutaneous breast (4T1) tumor | T1-MR image-guided PDT (660-nm laser) | [66] |
Gd-doped Rose Bengal coordination polymer nanodots | Photosensitizer Rose Bengal | Subcutaneous breast (4T1) tumor | MR/Fluorescence imaging-guided X-ray radiation therapy (X: 1Gy) /PDT (532-nm laser) | [67] |
PEG chelated gadolinium ion (Gd3+) | Photosensitizer chlorin e6 | Subcutaneous glioma (C6) tumor | T1-MR image-guided PDT (630-nm laser) | [68] |
Theranostics Involving Iron Oxide Nanoparticles | ||||
Fe3O4@ Polyacrylamide nanoparticles | Tumor-avid F3 peptide, Photosensitizer Photofrin | Orthotopic glioma (9L) tumor | T2 MRI-guided PDT (630-nm laser) | [70] |
Fe3O4@Chitosan core-shell nanoparticles | Photosensitizer PHPP | Intradermal colon (SW 480) tumor | T2 MRI-guided PDT (630-nm laser) | [71] |
Carbon-shell coated Fe3O4 nanoclusters | Porphyrin Metal-organic frameworks with linked photosensitizer TCPP | Subcutaneous breast (MCF-7) tumor | Fluorescence imaging and T2 MRI-guided combined PTT (808-nm laser) and PDT (655- nm laser) | [72] |
Fe3O4 nanoparticles hyaluronic acid | Photosensitizer Pheophorbide a | Subcutaneous melanoma (K1735) tumor | Fluorescence imaging and T2 MRI-guided combined MHT (112 kHz magnetic field) and PDT (671- nm laser) | [64] |
Fe3O4/carbon nanoparticles | Photosensitizer ICG | Subcutaneous breast (4T1) tumor | MRI and NIRF guided PTT (808-nm laser) | [75] |
Theranostics Involving Dopamine-Containing Nanostructures | ||||
Dopamine-containing silica-coated UCNPs | Gadolinium | Subcutaneous squamous cell carcinoma (U14) tumor | Multimodal (optical, MR and CT) image-guided PTT (980-nm laser) | [77] |
Polydopamine (PDA) nanoparticles with MOF shell | Gadolinium and photosensitizer Ce6 | Subcutaneous breast (4T1) tumor | Dual-modal (MRI and PA) -guided synergistic PDT (660-nm laser) and PTT (808-nm laser) | [78] |
Polydopamine nanodots with iron oxide nanoclusters | Subcutaneous breast (4T1) tumor | MRI guided-PTT (785-nm laser) | [79] | |
Theranostics Involving Radiolabelled Nanostructures | ||||
Fe3O4 nanoparticles | g-emitting 99mTc, NIR optical probe IR-1061 | Subcutaneous breast (4T1) tumor | Combined SPECT, MRI and PAI-guided PTT (808-nm laser) | [83] |
PEG-functionalized graphene oxide | Positron-emitter Cu-64 labelled photosensitizer HPPH | Subcutaneous breast (4T1) tumor | Fluorescence and PET-imaging guided PDT (650-nm laser) | [84] |
PEG-coated nanomicelles | Positron-emitter Cu-64 labelled photosensitizer chlorin e6 | Subcutaneous breast (4T1) tumor | Fluorescence and PET-imaging guided PDT (650-nm laser) | [85] |
Hollow mesoporous silica nanoparticles | Positron emitter Zr-89, photosensitizer chlorin e6 | Subcutaneous breast (4T1) tumor | Cerenkov-luminescence mediated PDT and PET-imaging mediated monitoring of therapy progression in real time | [86] |
Hollow mesoporous silica nanoparticles modified with copper sulfide nanoparticles | Positron emitter Zr-89, photosensitizer chlorin e6 | Subcutaneous breast (4T1) tumor | Cerenkov-luminescence mediated combined PDT (Chlorin e6) and PTT (Copper sulfide NPs), along with PET imaging | [87] |
TiO2 nanoparticles | Positron emitter Cu-64 or F-18 | Subcutaneous fibrosarcoma (HT1080) tumor | Cerenkov-luminescence mediated PDT, along with PET imaging | [88] |
TiO2 nanoparticles | Positron emitter F-18 | Subcutaneous fibrosarcoma (HT10) tumor | Cerenkov-luminescence mediated PDT, along with PET imaging | [89] |
Colloidal MnO2 within nanoparticles of the polymer poly (ε-caprolactone-co-lactide)-b-poly (ethylene glycol)-b-poly (ε-caprolactone-co-lactide) | Drug doxorubicin, photosensitizer chlorin e6 | Subcutaneous breast (MCF-7) tumor | Tri-modal (fluorescence, PAI and MRI) -guided PDT (650-nm laser) and real-time therapy monitoring | [91] |
PEG-coated combined MnO2 nanoparticles, reduced nanographene oxide and UCNPs | Photosensitizer chlorin e6 | Subcutaneous squamous cell carcinoma (U14) tumor | Tri-modal (fluorescence, PAI, and MRI)-guided PDT (650-nm laser) and real-time therapy monitoring | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Zvyagin, A.V.; Roy, I. Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. J. Nanotheranostics 2021, 2, 131-156. https://doi.org/10.3390/jnt2030009
Sharma S, Zvyagin AV, Roy I. Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. Journal of Nanotheranostics. 2021; 2(3):131-156. https://doi.org/10.3390/jnt2030009
Chicago/Turabian StyleSharma, Shalini, Andrei V. Zvyagin, and Indrajit Roy. 2021. "Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies" Journal of Nanotheranostics 2, no. 3: 131-156. https://doi.org/10.3390/jnt2030009
APA StyleSharma, S., Zvyagin, A. V., & Roy, I. (2021). Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. Journal of Nanotheranostics, 2(3), 131-156. https://doi.org/10.3390/jnt2030009