Selenium Quantification in Soil by LIBS
Abstract
1. Introduction
2. Materials and Methods
2.1. LIBS Setup
2.2. Soil Samples
3. Results and Discussion
3.1. Selenium LIBS Spectrum
3.2. Analytical Line Choice for Selenium Quantification in Soil
3.3. Laser Sampling and Analytical Performance Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAS | atomic absorption spectrometry |
| AES | atomic emission spectrometry |
| AFS | atomic fluorescence spectrometry |
| DG | digital generator |
| FWHM | full width at half maximum |
| GF | graphite furnace |
| “GIC PV” | Main Testing Center for Drinking Water (abbreviated in Russian) |
| HG | hydride generation |
| ICCD | intensified charge-coupled device |
| ICP | inductively coupled plasma |
| Int. | intensity |
| IUPAC | International Union of Pure and Applied Chemistry |
| LA | laser ablation |
| LIBS | laser-induced breakdown spectrometry |
| LLC | Limited Liability Company |
| LOD | limit of detection |
| MS | mass spectrometry |
| Nd | neodymium-doped |
| PC | personal computer |
| RMSECV | root mean square error of cross-alidation |
| RSD | relative standard deviation |
| XRF | X-ray fluorescence |
| YAG | yttrium aluminum garnet |
References
- Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020, 9, 80. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Selinus, O., Alloway, B., Centeno, J.A., Finkelman, R.B., Fuge, R., Lindh, U., Smedley, P., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Sarimov, R.M.; Astashev, M.E.; Pishchalnikov, R.Y.; Yanykin, D.V.; Simakin, A.V.; Shkirin, A.V.; Serov, D.A.; Konchekov, E.M.; Gusein-zade, N.G.; et al. Modern physical methods and technologies in agriculture. Phys. Uspekhi 2024, 67, 194–210. [Google Scholar] [CrossRef]
- Favorito, J.E.; Grossl, P.R.; Davis, T.Z.; Eick, M.J.; Hankes, N. Soil–plant–animal relationships and geochemistry of selenium in the Western Phosphate Resource Area (United States): A review. Chemosphere 2021, 266, 128959. [Google Scholar] [CrossRef] [PubMed]
- Perkins, W.T. Extreme selenium and tellurium contamination in soils—An eighty year-old industrial legacy surrounding a Ni refinery in the Swansea Valley. Sci. Total Environ. 2011, 412–413, 162–169. [Google Scholar] [CrossRef] [PubMed]
- McNeal, J.M.; Balistrieri, L.S. Geochemistry and occurrence of selenium: An overview. In Selenium in Agricuture and the Environment; Jacobs, L.W., Chang, A.C., Dowdy, R.H., Severson, R.C., Sommers, L.E., Volk, V.V., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1989; pp. 1–13. [Google Scholar] [CrossRef]
- Feinberg, A.; Stenke, A.; Peter, T.; Hinckley, E.-L.S.; Driscoll, C.T.; Winkel, L.H.E. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Commun. Earth Environ. 2021, 2, 101. [Google Scholar] [CrossRef]
- Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Pinawa, MB, Canada; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Mikkelsen, R.L.; Page, A.L.; Bingham, F.T. Factors affecting selenium accumulation by agricultural crops. In Selenium in Agricuture and the Environment; Jacobs, L.W., Chang, A.C., Dowdy, R.H., Severson, R.C., Sommers, L.E., Volk, V.V., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1989; pp. 65–94. [Google Scholar] [CrossRef]
- White, P.J. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Nardi, S.; Dalla Vecchia, F.; Ertani, A. Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef]
- Teixeira, L.S.; Pimenta, T.M.; Brito, F.A.L.; Malheiros, R.S.P.; Arruda, R.S.; Araújo, W.L.; Ribeiro, D.M. Selenium uptake and grain nutritional quality are affected by nitrogen fertilization in rice (Oryza sativa L.). Plant Cell Rep. 2021, 40, 871–880. [Google Scholar] [CrossRef]
- Semenova, N.A.; Burmistrov, D.E.; Shumeyko, S.A.; Gudkov, S.V. Fertilizers based on nanoparticles as sources of macro- and microelements for plant crop growth: A review. Agronomy 2024, 14, 1646. [Google Scholar] [CrossRef]
- Burmistrov, D.E.; Shumeyko, S.A.; Semenova, N.A.; Dorokhov, A.S.; Gudkov, S.V. Selenium nanoparticles (Se NPs) as agents for agriculture crops with multiple activity: A review. Agronomy 2025, 15, 1591. [Google Scholar] [CrossRef]
- Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv. Healthc. Mater. 2021, 10, 2100598. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shafeev, G.A.; Glinushkin, A.P.; Shkirin, A.V.; Barmina, E.V.; Rakov, I.I.; Simakin, A.V.; Kislov, A.V.; Astashev, M.E.; Vodeneev, V.A.; et al. Production and use of selenium nanoparticles as fertilizers. ACS Omega 2020, 5, 17767–17774. [Google Scholar] [CrossRef] [PubMed]
- Sariñana-Navarrete, M.D.L.Á.; Morelos-Moreno, Á.; Sánchez, E.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Preciado-Rangel, P. Selenium nanoparticles improve quality, bioactive compounds and enzymatic activity in Jalapeño pepper fruits. Agronomy 2023, 13, 652. [Google Scholar] [CrossRef]
- Sardari, M.; Rezayian, M.; Niknam, V. Comparative study for the effect of selenium and nano-selenium on wheat plants grown under drought stress. Russ. J. Plant Physiol. 2022, 69, 127. [Google Scholar] [CrossRef]
- Morales-Espinoza, M.C.; Cadenas-Pliego, G.; Pérez-Alvarez, M.; Hernández-Fuentes, A.D.; Cabrera De La Fuente, M.; Benavides-Mendoza, A.; Valdés-Reyna, J.; Juárez-Maldonado, A. Se Nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules 2019, 24, 3030. [Google Scholar] [CrossRef]
- Ahmad, A.; Javad, S.; Iqbal, S.; Shahzadi, K.; Gatasheh, M.K.; Javed, T. Alleviation potential of green-synthesized selenium nanoparticles for cadmium stress in Solanum lycopersicum L: Modulation of secondary metabolites and physiochemical attributes. Plant Cell Rep. 2024, 43, 113. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Islam, F.; Ayyaz, A.; Chen, W.; Noor, Y.; Hu, W.; Hannan, F.; Zhou, W. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Pollut. 2022, 292, 118473. [Google Scholar] [CrossRef] [PubMed]
- Antanaitis, A.; Lubyte, J.; Antanaitis, S.; Staugaitis, G.; Viskelis, P. Selenium concentration dependence on soil properties. J. Food Agric. Environ. 2008, 6, 163–167. [Google Scholar]
- Roca-Perez, L.; Gil, C.; Cervera, M.L.; Gonzálvez, A.; Ramos-Miras, J.; Pons, V.; Bech, J.; Boluda, R. Selenium and heavy metals content in some Mediterranean soils. J. Geochem. Explor. 2010, 107, 110–116. [Google Scholar] [CrossRef]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim. Acta B At. Spectrosc. 2021, 175, 106013. [Google Scholar] [CrossRef]
- Basler, C.; Brandenburg, A.; Michalik, K.; Mory, D. Comparison of laser pulse duration for the spatially resolved measurement of coating thickness with laser-induced breakdown spectroscopy. Sensors 2019, 19, 4133. [Google Scholar] [CrossRef] [PubMed]
- Lazic, V.; Andreoli, F.; Almaviva, S.; Pistilli, M.; Menicucci, I.; Ulrich, C.; Schnürer, F.; Chirico, R. A Novel LIBS sensor for sample examinations on a crime scene. Sensors 2024, 24, 1469. [Google Scholar] [CrossRef]
- Kalnicky, D.J.; Singhvi, R. Field portable XRF analysis of environmental samples. J. Hazard. Mater. 2001, 83, 93–122. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS). Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Skrabatun, A.V.; Umanskaya, S.F.; Shevchenko, M.A.; Matrokhin, A.A.; Maresev, A.N.; Tcherniega, N.V. Synthetic opals in laser-induced breakdown spectroscopy problems. Phys. Wave Phenom. 2023, 31, 51–58. [Google Scholar] [CrossRef]
- Maresev, A.N.; Shevchenko, M.A.; Tcherniega, N.V.; Umanskaya, S.F.; Karpov, M.A.; Kudryavtseva, A.D.; Voronova, V.V.; Lisichkin, G.V. LIBS efficiency increase via plasmonic nanoparticles in the study of synthetic opal matrices. Phys. Wave Phenom. 2024, 32, 164–170. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Almirall, J.R. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: Tape mounting as an alternative to pellets for small forensic transfer specimens. Appl. Spectrosc. 2014, 68, 963–974. [Google Scholar] [CrossRef]
- Almaviva, S.; Colao, F.; Menicucci, I.; Pistilli, M. Double pulse LIBS analysis of metallic coatings of fusionistic interest: Depth profiling and semi-quantitative elemental composition by applying the calibration free technique. J. Nucl. Eng. 2023, 4, 193–203. [Google Scholar] [CrossRef]
- Menegatti, C.R.; Nicolodelli, G.; Senesi, G.S.; Da Silva, O.A.; Filho, H.J.I.; Villas Boas, P.R.; Marangoni, B.S.; Milori, D.M.B.P. Semiquantitative analysis of mercury in landfill leachates using double-pulse laser-induced breakdown spectroscopy. Appl. Opt. 2017, 56, 3730–3735. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, J.; Villot-Kadri, M.; Ismaël, A.; Gallou, G.; Michel, K.; Bruyère, D.; Laperche, V.; Canioni, L.; Bousquet, B. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy. Spectrochim. Acta. B At. Spectrosc. 2013, 79–80, 51–57. [Google Scholar] [CrossRef]
- Martin, M.Z.; Labbé, N.; André, N.; Wullschleger, S.D.; Harris, R.D.; Ebinger, M.H. Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy. Soil Sci. Soc. Am. J. 2010, 74, 87–93. [Google Scholar] [CrossRef]
- Leva Borduchi, L.C.; Menegatti, C.R.; Bastos Pereira Milori, D.M.; Izário Filho, H.J.; Villas-Boas, P.R. Application of one-point calibration LIBS for quantification of analytes in samples with distinct matrix characteristics: A case study with Hg. J. Anal. At. Spectrom. 2023, 38, 1155–1163. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Motto-Ros, V.; Trichard, F.; Markushin, Y.; Melikechi, N.; De Giacomo, A. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 2016, 115, 52–63. [Google Scholar] [CrossRef]
- Koskelo, A.; Cremers, D.A. RCRA Materials Analysis by Laser-Induced Breakdown Spectroscopy: Detection Limits in Soils; Technical Report LA–UR 94–1544; Los Alamos National Laboratory: Los Alamos, NM, USA, 1994. [CrossRef][Green Version]
- Simeonsson, J.B.; Williamson, L.J. Characterization of laser induced breakdown plasmas used for measurements of arsenic, antimony and selenium hydrides. Spectrochim. Acta B At. Spectrosc. 2011, 66, 754–760. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, S.-W.; Lee, Y.; Nam, S.-H. Fast and simple selenium speciation by solid phase extraction and laser-induced breakdown spectroscopy. J. Anal. Sci. Technol. 2020, 11, 27. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2024; Available online: https://wrb.isric.org/documents/ (accessed on 2 November 2025).
- Wang, Z.; Afgan, M.S.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. Trends Anal. Chem. (TrAC) 2021, 143, 116385. [Google Scholar] [CrossRef]
- NIST ASD Team. Atomic Spectra Database: NIST Standard Reference Database 78, Version 5.12; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2024. [CrossRef]
- Zaidel’, A.N.; Prokof’ev, V.K.; Raiskii, S.M.; Slavnyi, V.A.; Shreider, E.Y. Tables of Spectral Lines; Plenum Publishing Corporation/Springer Science+Business Media, LLC: New York, NY, USA, 1970. [Google Scholar] [CrossRef]
- Atomic Spectral Line Database from CD-ROM 23 of R. L. Kurucz. Available online: https://lweb.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html (accessed on 2 November 2025).
- Popov, A.M.; Zaytsev, S.M.; Seliverstova, I.V.; Zakuskin, A.S.; Labutin, T.A. Matrix effects on laser-induced plasma parameters for soils and ores. Spectrochim. Acta B At. Spectrosc. 2018, 148, 205–210. [Google Scholar] [CrossRef]
- Popov, A.M.; Labutin, T.A.; Zaytsev, S.M.; Seliverstova, I.V.; Zorov, N.B.; Kal’ko, I.A.; Sidorina, Y.N.; Bugaev, I.A.; Nikolaev, Y.N. Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry. J. Anal. At. Spectrom. 2014, 29, 1925–1933. [Google Scholar] [CrossRef]
- Shi, L.; Lin, Q.; Duan, Y. A novel specimen-preparing method using epoxy resin as binding material for LIBS analysis of powder samples. Talanta 2015, 144, 1370–1376. [Google Scholar] [CrossRef]
- Yalçın, Ş.; Örer, S.; Turan, R. 2-D analysis of Ge implanted SiO2 surfaces by laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 2008, 63, 1130–1138. [Google Scholar] [CrossRef][Green Version]
- Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Nikitin, E.A.; Gudkov, S.V.; Pershin, S.M. Improving calibration strategy for LIBS heavy metals analysis in agriculture applications. Photonics 2021, 8, 563. [Google Scholar] [CrossRef]
- Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Gudkov, S.V.; Dorokhov, A.S.; Bunkin, A.F.; Pershin, S.M. Improving the LIBS analysis of heavy metals in heterogeneous agricultural samples utilizing large laser spotting. J. Anal. At. Spectrom. 2022, 37, 2563–2572. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y.; Yu, K. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops. Comput. Electron. Agric. 2022, 197, 106986. [Google Scholar] [CrossRef]
- Rogachevskaya, A. Se in Soil by LIBS Calibration; Elsevier Inc. (Mendeley Data): Amsterdam, The Netherlands, 2025. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Poggialini, F.; Legnaioli, S.; Campanella, B.; Cocciaro, B.; Lorenzetti, G.; Raneri, S.; Palleschi, V. Calculating the limits of detection in laser-induced breakdown spectroscopy: Not as easy as it might seem. Appl. Sci. 2023, 13, 3642. [Google Scholar] [CrossRef]
- Lednev, V.N.; Sdvizhenskii, P.A.; Liu, D.S.; Gorudko, I.V.; Pershin, S.M.; Bunkin, A.F. Signal distribution impact on limit of detection in laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 2024, 213, 106864. [Google Scholar] [CrossRef]
- Lednev, V.N.; Sdvizhenskii, P.A.; Liu, D.; Gudkov, S.V.; Pershin, S.M. Non-Gaussian Signal Statistics’ Impact on LIBS Analysis. Photonics 2023, 11, 23. [Google Scholar] [CrossRef]
- Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a ‘black box’ approach and how to avoid them. Spectrochim. Acta B At. Spectrosc. 2018, 144, 46–54. [Google Scholar] [CrossRef]
- Khan, M.R.; Haq, S.U.; Abbas, Q.; Nadeem, A. Magnetic field confined laser-induced plasma: Improvement in sensitivity and repeatability. Spectrochim. Acta B At. Spectrosc. 2023, 200, 106612. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, H.; Li, H. Chemometrics in laser-induced breakdown spectroscopy. J. Chemom. 2018, 32, e2983. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Liu, F.; Huang, J.; Peng, J. Application of deep learning in laser-induced breakdown spectroscopy: A review. Artif. Intell. Rev. 2023, 56, 2789–2823. [Google Scholar] [CrossRef]










| Sample Type | Number of Averaged Sampling Points | R2 | LOD | RMSECV |
|---|---|---|---|---|
| Loose soil powder | 3 | 0.926 | 27 | 89 |
| 9 | 0.966 | 23 | 59 | |
| 18 | 0.973 | 4 | 40 | |
| Tape adhesive-mounted soil powder | 3 | 0.786 | 95 | 101 |
| 9 | 0.854 | 30 | 55 | |
| 18 | 0.975 | 15 | 43 | |
| Tableted soil powder | 3 | 0.912 | 39 | 50 |
| 9 | 0.947 | 15 | 64 | |
| 18 | 0.989 | 3 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rogachevskaya, A.V.; Lednev, V.N.; Sdvizhenskii, P.A.; Savin, I.Y.; Gudkov, S.V.; Dorohov, A.S.; Izmaylov, A.Y. Selenium Quantification in Soil by LIBS. Physics 2026, 8, 9. https://doi.org/10.3390/physics8010009
Rogachevskaya AV, Lednev VN, Sdvizhenskii PA, Savin IY, Gudkov SV, Dorohov AS, Izmaylov AY. Selenium Quantification in Soil by LIBS. Physics. 2026; 8(1):9. https://doi.org/10.3390/physics8010009
Chicago/Turabian StyleRogachevskaya, Alexandra V., Vasily N. Lednev, Pavel A. Sdvizhenskii, Igor Y. Savin, Sergey V. Gudkov, Alexey S. Dorohov, and Andrey Y. Izmaylov. 2026. "Selenium Quantification in Soil by LIBS" Physics 8, no. 1: 9. https://doi.org/10.3390/physics8010009
APA StyleRogachevskaya, A. V., Lednev, V. N., Sdvizhenskii, P. A., Savin, I. Y., Gudkov, S. V., Dorohov, A. S., & Izmaylov, A. Y. (2026). Selenium Quantification in Soil by LIBS. Physics, 8(1), 9. https://doi.org/10.3390/physics8010009

