Simulating Magnetic Ordering and Exchange Interactions in Ni2Co(BO3)2
Abstract
1. Introduction
2. Structural Properties
3. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petrakovskii, G.A.; Sablina, K.A.; Vorotynov, A.M.; Bayukov, O.A.; Bovina, A.F.; Bondarenko, G.V.; Szymczak, R.; Baran, M.; Szymczak, H. Synthesis and magnetic properties of Cu3B2O6 single crystals. Phys. Sol. State 1999, 41, 610–612. [Google Scholar] [CrossRef]
- Newnham, R.E.; Santoro, R.P.; Seal, P.F.; Stallings, G.R. Antiferromagnetism in Mn3B2O6, Co3B2O6, and Ni3B2O6. Phys. Status Sol. (b)/Basic Sol. State Phys. 1966, 16, K17–K19. [Google Scholar] [CrossRef]
- Effenberger, H.; Pertlik, F. Verfeinerung der Kristallstrukturen der isotypen Verbindungen M3(BO3)2 mit M = Mg, Co und Ni (Strukturtyp: Kotoit). Z. Kristallogr./Crystal. Mater. 1984, 166, 129–140. [Google Scholar] [CrossRef]
- Berger, S.V. The crystal structure of the isomorphous orthoborates of cobalt and magnesium. Acta Chem. Scand. 1949, 3, 660–675. [Google Scholar] [CrossRef]
- Pardo, J.; Martinez-Ripoll, M.; García-Blanco, S. The crystal structure of nickel orthoborate, Ni3(BO3)2. Acta Crystallogr. B 1974, 30, 37–40. [Google Scholar] [CrossRef]
- Newnham, R.; Redman, M.; Santoro, R. Neutron-diffraction study of Co3B2O6. Z. Kristallogr./Crystal. Mater. 1965, 121, 418–424. [Google Scholar] [CrossRef]
- Kazak, N.V.; Platunov, M.S.; Ivanova, N.B.; Knyazev, Y.V.; Bezmaternykh, L.N.; Eremin, E.V.; Vasil’ev, A.D.; Bayukov, O.A.; Ovchinnikov, S.G.; Velikanov, D.A.; et al. Crystal structure and magnetization of a Co3B2O6 single crystal. J. Exp. Theor. Phys. 2013, 117, 94–107. [Google Scholar] [CrossRef]
- Pisarev, R.V.; Prosnikov, M.A.; Davydov, V.Y.; Smirnov, A.N.; Roginskii, E.M.; Boldyrev, K.N.; Molchanova, A.D.; Popova, M.; Smirnov, M.B.; Kazimirov, V.Y. Lattice dynamics and a magnetic-structural phase transition in the nickel orthoborate Ni3(BO3)2. Phys. Rev. B 2016, 93, 134306. [Google Scholar] [CrossRef]
- Molchanova, A.; Prosnikov, M.; Petrov, V.; Dubrovin, R.; Nefedov, S.; Chernyshov, D.; Smirnov, A.; Davydov, V.; Boldyrev, K.; Chernyshev, V.; et al. Lattice dynamics of cobalt orthoborate Co3(BO3)2 with kotoite structure. J. Alloys Compd. 2021, 865, 158797. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Tian, J.; Ma, X.; Ping, Q.; Wang, B.; Xia, Y. Ni3(BO3)2 as anode material with high capacity and excellent rate performance for sodium-ion batteries. Chem. Engin. J. 2019, 363, 285–291. [Google Scholar] [CrossRef]
- Tekin, B.; Güler, H. Synthesis and crystal structure of dicobalt nickel orthoborate, Co2Ni(BO3)2. Mater. Chem. Phys. 2008, 108, 88–91. [Google Scholar] [CrossRef]
- Güler, H.; Tekin, B. Synthesis and crystal structure CoNi2(BO3)2. Inorg. Mater. 2009, 45, 538–542. [Google Scholar] [CrossRef]
- Sofronova, S.; Moshkina, E.; Chernyshev, A.; Vasiliev, A.; Maximov, N.; Aleksandrovsky, A.; Andryushchenko, T.; Shabanov, A. Crystal growth and cation order of Ni3-xCoxB2O6 oxyborates. CrystEngComm 2024, 26, 2536–2543. [Google Scholar] [CrossRef]
- Sofronova, S.N.; Pavlovskii, M.S.; Krylova, S.N.; Vtyurin, A.N.; Krylov, A.S. Lattice Dynamics of Ni3−xCoxB2O6 Solid Solutions. Crystals 2024, 14, 994. Available online: https://www.mdpi.com/2073-4352/14/11/994 (accessed on 11 November 2025).
- Sofronova, S.; Chernyshev, A. Magnetic ordering and the role of superexchange Ni–O–B–O–Ni upon the formation of magnetic order in ludwigite Ni2MnBO5 from first-principal calculations. Comput. Condens. Matter 2024, 40, e00918. [Google Scholar] [CrossRef]
- Pchelkina, Z.V. Calculation of Magnetic Exchange Interactions and Construction of a Spin Model for Low-Dimensional Magnetic Compounds. J. Electron. Mater. 2019, 48, 1480–1485. [Google Scholar] [CrossRef]
- Novak, P.; Chaplygin, I.; Seifert, G.; Gemming, S.; Laskowski, R. Ab-initio calculation of exchange interactions in YMnO3. Comput. Mater. Sci. 2008, 44, 79–81. [Google Scholar] [CrossRef]
- Sofronova, S.N.; Velikanov, D.A.; Moshkina, E.M.; Chernyshev, A.V. Magnetization of solid solutions of antiferromagnets Ni3−xCoxB2O6 with the competing orientation of anisotropy axes. Bull. Russ. Acad. Sci. Phys. 2024, 88, S47–S52. [Google Scholar] [CrossRef]
- Sjöstedta, E.; Nordströma, L.; Singhb, D. An alternative way of linearizing the augmented plane-wave method. Sol. State Commun. 2000, 114, 15–20. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.; Kvasnicka, D.; Luitz, J. An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology Inst. of Physical and Theoretical Chemistry: Vienna, Austria, 2024. Available online: http://www.wien2k.at/reg_user/textbooks/usersguide.pdf (accessed on 11 November 2025).
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.; Marks, L. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 2020, 152, 074101. [Google Scholar] [CrossRef]
- Perdew, J.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner. I. Phys. Rev. B 1991, 44, 943–954. [Google Scholar] [CrossRef]
- Shick, A.B.; Liechtenstein, A.I.; Pickett, W.E. Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 1999, 60, 10763. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Solovyev, I.V.; Korotin, M.A.; Czyżyk, M.T.; Sawatzky, G.A. Density-functional theory and NiO photoemission spectra. Phys. Rev. B 1993, 48, 16929. [Google Scholar] [CrossRef]
- Sofronova, S.N.; Nazarenko, I.I. Super-superexchange influence on magnetic ordering in Ni3B2O6 kotoite. Phys. Status Sol. (b)/Basic Sol. State Phys. 2019, 256, 1900060. [Google Scholar] [CrossRef]
- Ignatiev, P.A.; Negulyaev, N.N.; Bazhanov, D.I.; Stepanyuk, V.S. Doping of cobalt oxide with transition metal impurities: Ab initio study. Phys. Rev. B 2010, 81, 235123. [Google Scholar] [CrossRef]
- Freitas, D.C.; Medrano, C.P.C.; Sanchez, D.R.; Nunez, R.M.; Velamazan, J.A.R.; Continentino, M.A. Magnetism and charge order in the ladder compound Co3O2BO3. Phys. Rev. B 2016, 94, 174409. [Google Scholar] [CrossRef]
- Freitas, D.C.; Continentino, M.A.; Guimar, R.B.; Fernandes, J.C.; Ellena, J.; Ghivelder, L. Structure and magnetism of homometallic ludwigites: Co3O2BO3 versus Fe3O2BO3. Phys. Rev. B 2008, 77, 184422. [Google Scholar] [CrossRef]
- Diaz, S.; de Brion, S.; Holzapfel, M.; Chouteau, G.; Strobel, P. Study of competitive magnetic interactions in the spinel compounds GeNi2O4, GeCo2O4. Physica B 2004, 346–347, 146–149. [Google Scholar] [CrossRef]
- Diaz, S.; de Brion, S.; Chouteau, G.; Strobel, P.; Canals, B.; Carvajal, J.R.; Rakoto, H.; Broto, J.M. Magnetic frustration in the spinel compounds GeNi2O4 and GeCo2O4. J. Appl. Phys. 2005, 97, 10A512. [Google Scholar] [CrossRef]
- Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Sol. 1959, 10, 87–98. [Google Scholar] [CrossRef]
- Van Vleck, J.H. The Theory of Electric and Magnetic Susceptibilities; Claredon Press/Oxford University Press: London, UK, 1932; Available online: https://archive.org/details/theoryofelectric031070mbp (accessed on 11 November 2025).
- Heisenberg, W. Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys. 1926, 38, 411–426, English translation: The multibody problem and resonance in quantum mechanics. Available online: http://xdel.ru/downloads/www.nonloco-physics.0catch.com (accessed on 11 November 2025). [CrossRef]
- Anderson, P.W. New approach to the theory of superexchange interactions. Phys. Rev. 1959, 115, 2–13. [Google Scholar] [CrossRef]
- Sawatzky, G.A.; Geertama, W.; Haas, C. Magnetic interactions and covalency effects in mainly ionic compounds. J. Magn. Magn. Mater. 1976, 3, 37–45. [Google Scholar] [CrossRef]
- Anderson, P.W. Theory of magnetic exchange interactions:Exchange in insulators and semiconductors. Sol. State Phys. 1963, 14, 99–214. [Google Scholar] [CrossRef]
- Bayukov, O.A.; Savitskii, A.F. The prognostication possibility of some magneticproperties for dielectrics on the basis of covalency parameters of ligand–cation bonds. Phys. Status Sol. (b)/Basic Sol. State Phys. 1989, 155, 249–255. [Google Scholar] [CrossRef]
- Bezmaternykh, L.N.; Sofronova, S.N.; Volkov, N.V.; Eremin, E.V.; Bayukov, O.A.; Nazarenko, I.I.; Velikanov, D.A. Magnetic properties of Ni3B2O6 and Co3B2O6 single crystals. Phys. Status Sol. (b)/Basic Sol. State Phys. 2012, 249, 1628–1633. [Google Scholar] [CrossRef]
- Krupička, S. Physik der Ferrite und der Verwandten Magnetischen Oxide; Friedr. Vieweg+Sohn Braunschweig/ACADEMIA: Prague, Czech Republic, 1973. [Google Scholar] [CrossRef]








| Position of Transition Metal Ion | Degeneracy of Symmetry-Inequivalent Configurations | Energy | ||||||
|---|---|---|---|---|---|---|---|---|
| 2a | 4f | E per Formula Unit (a.u.) | E − Emin (eV) | |||||
| 1 | 2 | 3 | 4 | 5 | 6 | |||
| Co | Co | Ni | Ni | Ni | Ni | 1 | −9872.9361 | 0 |
| Ni | Co | Co | Ni | Ni | Ni | 4 | −9872.9135 | 0.32 |
| Ni | Co | Ni | Co | Ni | Ni | |||
| Co | Ni | Ni | Ni | Co | Ni | |||
| Co | Ni | Ni | Ni | Ni | Co | |||
| Co | Ni | Co | Ni | Ni | Ni | 4 | −9872.9132 | 0.32 |
| Co | Ni | Ni | Co | Ni | Ni | |||
| Ni | Co | Ni | Ni | Co | Ni | |||
| Ni | Co | Ni | Ni | Ni | Co | |||
| Ni | Ni | Co | Co | Ni | Ni | 2 | −9872.8928 | 0.59 |
| Ni | Ni | Ni | Ni | Co | Co | |||
| Ni | Ni | Ni | Co | Ni | Co | 2 | −9872.8918 | 0.61 |
| Ni | Ni | Co | Ni | Co | Ni | |||
| Ni | Ni | Co | Ni | Ni | Co | 2 | −9872.8914 | 0.61 |
| Ni | Ni | Ni | Co | Co | Ni | |||
| Atomic Coordinates and Lattice Parameters | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Lattice parameters | a (Å) | b (Å) | c (Å) | |||||||
| These calculations | 4.48 | 5.46 | 8.42 | |||||||
| Experimental parameters [12] | 4.48 | 5.42 | 8.35 | |||||||
| Atom | Site | Atom coordinates | ||||||||
| x/a | y/b | z/c | ||||||||
| Ni | 4f | 1/2 | 0 | 0.3086 | ||||||
| Co | 2a | 1/2 | 1/2 | 1/2 | ||||||
| O1 | 8h | 0.7096 | 0.1811 | 0.1367 | ||||||
| O2 | 4g | 0.2420 | 0.3087 | 0 | ||||||
| B | 4g | 0.5403 | 0.2370 | 0 | ||||||
| Distances between Me–Me (Å) | ||||||||||
| First coordination sphere | Second coordination sphere | |||||||||
| Co-Ni | Ni–Ni | Co–Co | Ni–Ni | |||||||
| 3.1702 3.4306 | 3.2232 3.6667 | 4.48 5.46 | 4.48 5.1968 5.46 | |||||||
| Distances between Me–O (Å) | ||||||||||
| Co–O | Ni–O | |||||||||
| Distances | Number of bonds | Distances | Number of bonds | |||||||
| 1.9988 | 4 | 1.9886 | 2 | |||||||
| 2.0041 | 2 | 2.2054 | 2 | |||||||
| 2.2218 | 2 | |||||||||
| Exchange Interaction | Me–O Distance | Me–O–Me Angle | |
|---|---|---|---|
| J1 | Co–O (Å) | Ni–O (Å) | ∠(Co–O–Ni) (°) |
| 2.0041 | 2.2218 | 97.607 | |
| 1.9988 | 2.2054 | 97.234 | |
| J2 | Co–O (Å) | Ni–O (Å) | ∠(Co–O–Ni) (°) |
| 1.9988 | 1.9886 | 118.718 | |
| J3 | Ni–O (Å) | Ni–O (Å) | ∠(Co–O–Ni) (°) |
| 2.2054 | 2.2054 | 93.900 | |
| J4 | Ni–O (Å) | Ni–O (Å) | ∠(Co–O–Ni) (°) |
| 1.9886 | 2.2218 | 121.017 | |
| Echange Interation | Me–O Distance | O–B Distance Me–O–B, O–B–O Angle (∠) | Me–O Distance | |||
|---|---|---|---|---|---|---|
| J5 | Ni–O (Å) | O–B (Å) | B–O (Å) | Ni–O (Å) | ||
| 1.9886 | 1.4118 | 1.4118 | 1.9886 | |||
| ∠(Ni–O–B) (°) | ∠(O–B–O) (°)≤ | ∠(Ni–O–B) (°) | ||||
| 116.565 | 109.227 | 116.565 | ||||
| J6 | Co–O (Å) | O–B (Å) | B–O (Å) | Co–O (Å) | ||
| 2.0041 | 1.3925 | 1.4118 | 1.9988 | |||
| ∠(Co–O–B) (°) | ∠(O–B–O) (°) | ∠(Co–O–B) (°) | ||||
| 106.423 | 125.193 | 89.263 | ||||
| J7 | Co–O (Å) | O–B (Å) | B–O (Å) | Ni–O (Å) | ||
| 1.9988 | 1.4118 | 1.3925 | 2.2054 | |||
| ∠(Co–O–B) (°) | ∠(O–B–O) (°) | ∠(Ni–O–B) (°) | ||||
| 89.263 | 125.193 | 127.223 | ||||
| J8 | Ni–O (Å) | O–B (Å) | B–O (Å) | Ni–O (Å) | ||
| 2.2054 | 1.4118 | 1.3925 | 2.2218 | |||
| ∠(Ni–O–B) (°) | ∠(O–B–O) (°) | ∠(Ni–O–B) (°) | ||||
| 127.223 | 125.193 | 108.310 | ||||
| Co1 | Co2 | Ni3 | Ni4 | Ni5 | Ni6 | Contribution of Exchange Interactions Exchange Part of Energy | |
|---|---|---|---|---|---|---|---|
| (meV) | |||||||
| u | u | d | d | d | d | −1.1 | |
| d | u | d | d | u | u | 1.5 | |
| d | u | u | u | d | d | 11.2 | |
| u | u | u | u | u | u | 7.0 | |
| d | u | u | d | d | u | 23.6 | |
| d | u | d | u | d | u | 21.2 | |
| d | d | d | d | u | u | 5.9 | |
| u | d | u | u | u | u | 3.7 | |
| 1 | 1′ | 2 | 2′ | 3 | 3′ | 4 | 4′ | 5 | 5′ | 6 | 6′ | Contribution of Exchange Exchange Part of Energy | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Interactions | (meV) | ||||||||||||
| u | d | u | d | u | d | d | u | u | d | d | u | 8.7 | |
| d | u | d | u | d | u | d | u | u | d | u | d | −23.8 | |
| u | u | u | d | u | d | u | d | d | d | d | d | −25.3 | |
| d | u | d | u | u | d | u | u | d | d | d | u | −6.5 | |
| 1 | 1′ | 2 | 2′ | 3 | 3′ | 4 | 4′ | 5 | 5′ | 6 | 6′ | Contribution of Exchange Exchange Part of Energy | |
| Interactions | (meV) | ||||||||||||
| d | d | d | u | u | u | d | d | d | u | d | d | −0.6 | |
| u | d | d | d | d | u | d | d | d | d | u | d | 0.6 | |
| d | u | u | u | u | d | d | u | d | d | u | d | −6.5 | |
| d | d | d | u | u | u | u | d | u | d | u | u | 6.5 | |
| −0.19 | −0.38 | 0.04 | −0.73 | −1.7 | 1.7 | 2.1 | −1.9 |
| The Magnetic Ordering. | (meV) Direct Calculation | (meV) Exchange Part |
|---|---|---|
| FM | 0 | 0 |
| AFM1 | −0.00059 | −0.00057 |
| AFM2 | −0.00341 | −0.00321 |
| Orientation of Magnetic Moments in Rhombic Magnetic Cell (2a × b × 2c) | Orientation of Magnetic Moments in Monoclinic Cell P21/c | (a.u.) | (meV) |
|---|---|---|---|
| [100] | [1–20] | −9872.515922 | 0.05 |
| [010] | [0–10] | −9872.515926 | 0 |
| [001] | [100] | −9872.515893 | 0.45 |
| Atom | |
|---|---|
| Co | 2.82 |
| Ni | 1.78 |
| O | 0.02 |
| O | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sofronova, S.; Chernyshev, A.; Selyanina, A.; Krylov, A.; Tislenko, T. Simulating Magnetic Ordering and Exchange Interactions in Ni2Co(BO3)2. Physics 2026, 8, 3. https://doi.org/10.3390/physics8010003
Sofronova S, Chernyshev A, Selyanina A, Krylov A, Tislenko T. Simulating Magnetic Ordering and Exchange Interactions in Ni2Co(BO3)2. Physics. 2026; 8(1):3. https://doi.org/10.3390/physics8010003
Chicago/Turabian StyleSofronova, Svetlana, Artem Chernyshev, Anna Selyanina, Aleksandr Krylov, and Timofey Tislenko. 2026. "Simulating Magnetic Ordering and Exchange Interactions in Ni2Co(BO3)2" Physics 8, no. 1: 3. https://doi.org/10.3390/physics8010003
APA StyleSofronova, S., Chernyshev, A., Selyanina, A., Krylov, A., & Tislenko, T. (2026). Simulating Magnetic Ordering and Exchange Interactions in Ni2Co(BO3)2. Physics, 8(1), 3. https://doi.org/10.3390/physics8010003

