The Time-Dependent Schrödinger Equation, Riccati Equation, and Airy Functions †
Abstract
:1. Introduction
2. Green’s Function: “Increasing Case”
3. Initial Value Problem: “Increasing Case”
4. “Oscillatory Case”
5. Momentum Representation
6. Gauge Transformation
7. Particular Solutions of Nonlinear Schrödinger Equations
8. Quantum Parametric Oscillator and Airy Functions
9. Quantum Parametric Oscillator: General Case
10. Group Theoretical Meaning of Transition Amplitudes
11. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Solutions of Airy Equation
Appendix B. Some Transformations of Hypergeometric Functions
Appendix C
Appendix C.1. Green’s Function: “Increasing Case”
Appendix C.2. Initial Value Problem: “Increasing Case”
Appendix C.3. “Oscillatory Case”
Appendix C.4. Momentum Representation
Appendix C.5. Gauge Transformation
References
- Brillouin, L. La mécanique ondulatoire de Schrödinger: Une méthode générale de résolution par approximations successives. Compt. Rend. Hebdom. L’Acad. Sci. 1926, 183, 24–26. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k3136h/f24 (accessed on 24 March 2024).
- Berry, M.V.; Mount, K.E. Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 1972, 35, 315–397. [Google Scholar] [CrossRef]
- Ghatak, A.K.; Gallawa, R.L.; Goyal, I.C. Modified Airy Function and WKB Solutions to the Wave Equations; National Institut of Standards and Technology (NIST): Boulder, CO, USA, 1991. Available online: https://archive.org/details/modifiedairyfunc176ghat/ (accessed on 24 March 2025).
- Kramers, H.A. Wellenmechanik und halbzählige Quantisierung. Z. Phys. 1926, 39, 828–840. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics. Non-Relativistic Theory; Pergamon Press Ltd.: Oxford, UK, 1977. [Google Scholar] [CrossRef]
- Merzbacher, E. Quantum Mechanics; John Wiley & Sons, Inc.: New York, NY, USA, 1998; Available online: https://archive.org/details/MerzbacherQantumMechanics (accessed on 24 March 2025).
- Wentzel, G. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 1926, 38, 518–529. [Google Scholar] [CrossRef]
- Barley, K.; Vega-Guzmán, J.; Ruffing, A.; Suslov, S.K. Discovery of the relativistic Schrödinger equation. Phys.-Usp. 2022, 65, 90–103. [Google Scholar] [CrossRef]
- Ellis, L.; Ellis, I.; Koutschan, C.; Suslov, S.K. On potentials integrated by the Nikiforov–Uvarov method. In Hypergeometric Functions, q-Series, and Generalizations; Cohl, H.S., Costas-Santos, R.S., Maier, R.S., Eds.; American Mathematical Society: Providence, RI, USA, 2023; Available online: http://www.koutschan.de/publ/EllisKoutschanSuslov23/NUmethod.pdf (accessed on 24 March 2025).
- Suslov, S.K.; Vega-Guzmán, J.M.; Barley, K. An Introduction to special functions with some applications to quantum mechanics. In Orthogonal Polynomials, Proceedings of the 2nd AIMS-Volkswagen Stiftung Workshop, Douala, Cameroon, 5–12 October 2018; Foupouagnigni, M., Koepf, W., Eds.; Birkhäuser/Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 517–628. [Google Scholar] [CrossRef]
- Flügge, S. Practical Quantum Mechanics; Springer-Verlag: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; National Institute of Standards and Technology (NIST)/Cambridge University Press: New York, NY, USA, 2010; Available online: https://univ.jeanpaulcalvi.com/Posters/ConfAuchWeb/abramovitz2.pdf (accessed on 24 March 2025).
- Feynman, R.P. The Principle of Least Action in Quantum Mechanics. In Feynman’s Thesis—A New Approach to Quantum Theory; Brown, L.M., Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005; pp. 1–69. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef]
- Feynman, R.P. The theory of positrons. Phys. Rev. 1949, 76, 749–759. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-time approach to quantum electrodynamics. Phys. Rev. 1949, 76, 769–789. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R. Quantum Mechanics and Path Integrals; McGraw-Hill Companies, Inc.: New York, NY, USA, 1965; Available online: https://archive.org/details/quantum-mechanics-and-path-integrals-emended-edition-pdfdrive-copy/ (accessed on 24 March 2025).
- Perelomov, A.M.; Popov, V.S. Group-theoretical aspects of the variable frequency oscillator problem. Theor. Math. Phys. 1969, 1, 275–285. [Google Scholar] [CrossRef]
- Lopez, R.M.; Suslov, S.K. The Cauchy problem for a forced harmonic oscillator. Rev. Mex. Fis. 2009, 55, 195–215. Available online: https://www.scielo.org.mx/pdf/rmfe/v55n2/v55n2a8.pdf (accessed on 24 March 2025).
- Perelomov, A.M.; Zel’dovich, Y.B. Quantum Mechanics. Selected Topics; World Scientific Publishing Co. Pte. Ltd: Singapore, 1998. [Google Scholar]
- Beauregard, L.A. Propagators in nonrelativistic quantum mechanics. Am. J. Phys. 1966, 34, 324–332. [Google Scholar] [CrossRef]
- Gottfried, K.; Yan, T.-M. Quantum Mechanics: Fundamentals; Springer Science+Business Media: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Holstein, B.R. The harmonic oscillator propagator. Am. J. Phys. 1998, 67, 583–589. [Google Scholar] [CrossRef]
- Maslov, V.P.; Fedoriuk, M.V. Semiclassical Approximation in Quantum Mechanics; D. Reidel Publishing Company/Kluwer Publishers Group: Dordrecht, Holland, 1981. [Google Scholar]
- Thomber, N.S.; Taylor, E.F. Propagator for the simple harmonic oscillator. Am. J. Phys. 1998, 66, 1022–1024. [Google Scholar] [CrossRef]
- Arrighini, G.P.; Durante, N.L. More on the quantum propagator of a particle in a linear potential. Am. J. Phys. 1996, 64, 1036–1041. [Google Scholar] [CrossRef]
- Brown, L.S.; Zhang, Y. Path integral for the motion of a particle in a linear potential. Am. J. Phys. 1994, 62, 806–808. [Google Scholar] [CrossRef]
- Holstein, B.R. The linear potential propagator. Am. J. Phys. 1997, 65, 414–418. [Google Scholar] [CrossRef]
- Nardone, P. Heisenberg picture in quantum mechanics and linear evolutionary systems. Am. J. Phys. 1993, 61, 232–237. [Google Scholar] [CrossRef]
- Robinett, R.W. Quantum mechanical time-development operator for the uniformly accelerated particle. Am. J. Phys. 1996, 64, 803–808. [Google Scholar] [CrossRef]
- Dong, S.-H. Factorization Method in Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Fraga, S.; García de la Vega, J.M.; Fraga, E.S. The Schrödinger and Riccati Equation; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Haaheim, D.R.; Stein, F.M. Methods of solution of the Riccati differential equation. Math. Mag. 1969, 42, 233–240. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Xu, B.W. Exact quantization rule and proper quantization rule. Europhys. Lett. 2005, 69, 685. [Google Scholar] [CrossRef]
- Meech, L.W. Integration of Riccati’s equation. Ann. Math. 1884, 1, 97–103. [Google Scholar] [CrossRef]
- Molchanov, A.M. The Riccati equation y′ = x + y2 for the Airy function. Dokl. Akad. Nauk. [Acad. Sci. Rep.] 2002, 383, 175–178. (In Russian) [Google Scholar]
- Rainville, E.D. Intermediate Differential Equations; The Macmillan Company: New York, NY, USA, 1964; Available online: https://archive.org/details/intermediatediff0000rain/ (accessed on 24 March 2025).
- Rajah, S.S.; Maharaj, S.D. A Riccati equation in radiative stellar collapse. J. Math. Phys. 2008, 49, 012501. [Google Scholar] [CrossRef]
- Watson, G.N. Theory of Bessel Functions; Cambridge University Press: London, UK, 1966; Available online: https://archive.org/details/treatiseontheory0000gnwa/ (accessed on 24 March 2025).
- Cordero-Soto, R.; Lopez, R.M.; Suazo, E.; Suslov, S.K. Propagator of a charged particle with a spin in uniform magnetic and perpendicular electric fields. Lett. Math. Phys. 2008, 84, 159–178. [Google Scholar] [CrossRef]
- Lanfear, N.; Lopez, R.M.; Suslov, S.K. Exact wave functions for generalized harmonic oscillators. J. Russ. Laser Res. 2011, 32, 312–321. [Google Scholar] [CrossRef]
- Koutschan, C.; Suazo, E.; Suslov, S.K. Fundamental laser modes in paraxial optics: From computer algebra and simulations to experimental observations. Appl. Phys. B 2015, 121, 315–336. [Google Scholar] [CrossRef]
- Acosta-Humánez, P.B.; Kryuchkov, S.I.; Suazo, E.; Suslov, S.K. Degenerate parametric amplification of squeezed photons: Explicit solutions, statistics, means, and variances. J. Nonlin. Opt. Phys. Mater. 2015, 24, 1550021. [Google Scholar] [CrossRef]
- Cordero-Soto, R.; Suazo, E.; Suslov, S.K. Models of damped oscillators in quantum mechanics. J. Phys. Math. 2009, 1, S090603. [Google Scholar] [CrossRef]
- Cordero-Soto, R.; Suazo, E.; Suslov, S.K. Quantum integrals of motion for variable quadratic Hamiltonians. Ann. Phys. 2010, 325, 1884–1912. [Google Scholar] [CrossRef]
- Cordero-Soto, R.; Suslov, S.K. The time inversion for modified oscillators. Theor. Math. Phys. 2010, 162, 286–316. [Google Scholar] [CrossRef]
- Kryuchkov, S.I.; Suazo, E.; Suslov, S.K. Time-dependent photon statistics in variable media. Math. Meth. Appl. Sci. 2019, 42, 5040–5051. [Google Scholar] [CrossRef]
- Meiler, M.; Cordero-Soto, R.; Suslov, S.K. Solution of the Cauchy problem for a time-dependent Schrödinger equation. J. Math. Phys. 2008, 49, 072102. [Google Scholar] [CrossRef]
- Sanborn, B.; Suslov, S.K.; Vinet, L. Dynamical invariants and the Berry phase for generalized driven harmonic oscillators. J. Russ. Laser Res. 2011, 32, 486–494. [Google Scholar] [CrossRef]
- Suazo, E.; Suslov, S.K. An integral form of the nonlinear Schrödinger equation with variable coefficients. In 2018 Progress in Electromagnetics Research Symposium (PIERS–Toyama 2018); Institute of Electrical and Electronics Engineers, Inc. (IEEE): Piscataway, NJ, USA, 2018; pp. 1214–1220. [Google Scholar] [CrossRef]
- Suslov, S.K. Dynamical invariants for variable quadratic Hamiltonians. Phys. Scr. 2010, 81, 055006. [Google Scholar] [CrossRef]
- Bateman, H. Partial Differential Equations of Mathematical Physics; Cambridge University Press: New York, NY, USA, 1944; Available online: https://archive.org/details/in.ernet.dli.2015.149754/ (accessed on 24 March 2025).
- Baz’, A.I.; Zel’dovich, Y.B.; Perelomov, A.M. Scattering, Reactions, and Decay in Nonrelativistic Quantum Mechanics; Israel Program for Scientific Translations: Jerusalem, Israel, 1969; Available online: https://archive.org/details/nasa_techdoc_19690016470/ (accessed on 24 March 2025).
- Cannon, J.R. The One-Dimensional Heat Equation; Addison–Wesley Publishing Company: Reading, MA, USA, 1984. [Google Scholar] [CrossRef]
- Cazenave, T. Semilinear Schrödinger Equations; American Mathematical Society/Courant Institute of Mathematical Sciences, New York University: New York, NY, USA; Providence, RI, USA, 2003; Available online: https://archive.org/details/semilinearschrod0000caze (accessed on 24 March 2025).
- Cazenave, T.; Haraux, A. An Introduction to Semilinear Evolution Equations; Clarendon Press: Oxford, UK, 1998; Available online: https://scispace.com/papers/an-introduction-to-semilinear-evolution-equations-3y0100r29z (accessed on 24 March 2025).
- Kryuchkov, S.I.; Suslov, S.K.; Vega-Guzmán, J.M. The minimum-uncertainty squeezed states for atoms and photons in a cavity. J. Phys. B 2013, 46, 104007. [Google Scholar] [CrossRef]
- Ladyženskaja, O.A.; Solonnikov, V.A.; Ural’ceva, N.N. Linear and Quasilinear Equations of Parabolic Type; American Mathematical Society: Providence, RI, USA, 1968; pp. 318, 356. [Google Scholar]
- Levi, E.E. Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. Circ. Mat. Palermo 1907, 24, 275–317. [Google Scholar] [CrossRef]
- Melnikova, I.V.; Filinkov, A. Abstract Cauchy Problems. Three Approaches; Chapman & Hall/CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Suazo, E.; Suslov, S.K. Soliton-like solutions for nonlinear Schrödinger equation with variable quadratic Hamiltonians. J. Russ. Laser Res. 2012, 33, 63–83. [Google Scholar] [CrossRef]
- Suazo, E.; Suslov, S.K.; Vega-Guzmán, J.M. The Riccati differential equation and a diffusion-type equation. New York J. Math. 2011, 17a, 225–244. Available online: https://nyjm.albany.edu/j/2011/17a-14.html (accessed on 24 March 2025).
- Suslov, S.K. On integrability of nonautonomous nonlinear Schrödinger equations. Proc. Am. Math. Soc. 2012, 140, 3067–3082. [Google Scholar] [CrossRef]
- Tao, T. Nonlinear Dispersive Equations: Local and Global Analysis; American Mathematical Society: Providence, RI, USA, 2006; Available online: https://archive.org/details/nonlineardispers0000taot/ (accessed on 24 March 2025).
- Perelomov, A.M.; Popov, V.S. Method of generating functions for a quantum oscillator. Theor. Math. Phys. 1970, 3, 582–592. [Google Scholar] [CrossRef]
- Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields; John Wiley & Sons, Inc.: New York, NY, USA, 1980; Available online: https://archive.org/details/IntroductionToTheoryOfQuantizedFields (accessed on 24 March 2025).
- Paliouras, J.D.; Meadows, D.S. Complex Variables for Scientists and Engineers; Macmillan Publishing Company: New York, NY, 1990; Available online: https://archive.org/details/complexvariables0002pali/ (accessed on 24 March 2025).
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions (with Formulas, Graphs, and Mathematical Tables); Dover Publications, Inc.: New York, NY, USA, 1972; Available online: https://archive.org/details/handbookofmathe000abra (accessed on 24 March 2025).
- Andrews, G.E.; Askey, R.A.; Roy, R. Special Functions; Cambridge University Press: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Askey, R.A. Orthogonal Polynomials and Special Functions; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1975. [Google Scholar] [CrossRef]
- Nikiforov, A.F.; Suslov, S.K.; Uvarov, V.B. Classical Orthogonal Polynomials of a Discrete Variable; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Nikiforov, A.F.; Uvarov, V.B. Special Functions of Mathematical Physics. A Unified Introduction with Applications; Birkhäuser Verlag/Springer: Basel, Switzerland, 1988. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960; Available online: https://archive.org/details/specialfunctions00rain_0 (accessed on 24 March 2025).
- Suslov, S.K.; Trey, B. The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems. J. Math. Phys. 2008, 49, 012104. [Google Scholar] [CrossRef]
- Szegö, G. Orthogonal Polynomials; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1975; Available online: https://people.math.osu.edu/nevai.1/SZEGO/szego=szego1975=ops=OCR.pdf (accessed on 24 March 2025).
- Erdélyi, A. (Ed.) Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1953–1955; Volumes I–III, Available online: https://authors.library.caltech.edu/records/cnd32-h9x80 (accessed on 24 March 2025).
- Erdélyi, A. (Ed.) Tables of Integral Transforms; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1954; Volumes I–II, Available online: https://authors.library.caltech.edu/records/mhd23-e0z22 (accessed on 24 March 2025).
- Bailey, W.N. Some integrals involving Hermite polynomials. J. Lond. Math. Soc. 1948, 23, 291–297. [Google Scholar] [CrossRef]
- Lord, R.D. Some integrals involving Hermite polynomials. J. Lond. Math. Soc. 1949, 24, 101–112. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.A. Classical orthogonal polynomials. In Polynômes Orthogonaux et Applications; Brezinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 36–62. [Google Scholar] [CrossRef]
- Askey, R.A. Continuous Hahn polynomials. J. Phys. A Math. Gen. 1985, 18, L1017–L1019. [Google Scholar] [CrossRef]
- Askey, R.A.; Wilson, J.A. A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 1982, 13, 651–655. [Google Scholar] [CrossRef]
- Askey, R.A.; Wilson, J.A. Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials; American Mathematical Society: Providence, RI, USA, 1985. [Google Scholar] [CrossRef]
- Atakishiyev, N.M.; Suslov, S.K. The Hahn and Meixner polynomials of imaginary argument and some of their applications. J. Phys. A Math. Gen. 1985, 18, 1583–1596. [Google Scholar] [CrossRef]
- Koekoek, R.; Swarttouw, R.F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogues; Report 98–17; Delft University of Technology: Delft, The Netherlands, 1998; Available online: https://fa.ewi.tudelft.nl/~koekoek/askey/ (accessed on 24 March 2025).
- Suslov, S.K. Matrix elements of Lorentz boosts and the orthogonality of Hahn polynomials on a contour. Sov. J. Nucl. Phys. 1982, 36, 621–622. [Google Scholar]
- Suslov, S.K. The Hahn polynomials in the Coulomb problem. Sov. J. Nucl. Phys. 1984, 40, 79–82. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Elsevier Butterworth–Heinemann/Elsevier Ltd.: Oxford, UK, 1976. [Google Scholar] [CrossRef]
- Magnus, W.; Winkler, S. Hill’s Equation; Intersince Publishers/John Willey & Sons, Inc.: New York, NY, USA, 1966; Available online: https://archive.org/details/hillsequation0000wilh/ (accessed on 24 March 2025).
- Dodonov, V.V.; Dodonov, A. Adiabatic versus instantaneous transitions from a harmonic oscillator to an inverted oscillator. In Proceedings of the Second International Workshop on Quantum Nonstationary Systems; Dodonov, A., Ribeiro, C.C.H., Eds.; LF Editorial: São Paulo, Brazil, 2024; pp. 21–42. Available online: http://www.cif.unb.br/images/Proceedings/QNS2/ch2.pdf (accessed on 24 March 2025).
- Filippov, G.F.; Ovcharenko, V.I.; Smirnov, Y.F. Microscopic Theory of Collective Excitation of Atomic Nuclei; Naukova Dumka: Kiev, USSR, 1981. (In Russian) [Google Scholar]
- Qiang, W.-C.; Dong, S.-H. Exact quantization rules for quantum soluble systems. EPL (Europhys. Lett.) 2010, 89, 10003. [Google Scholar] [CrossRef]
- Smirnov, Y.F.; Shitikova, K.V. The method of K-harmonics and the shell model. Sov. J. Part. Nucl. 1977, 8, 344–370. [Google Scholar]
- Adams, B.G.; Čižek, J.; Paldus, J. Lie algebraic methods and their applications to simple quantum systems. Adv. Quant. Chem. 1988, 19, 1–85. [Google Scholar] [CrossRef]
- Vilenkin, N.J. Special Functions and the Theory of Group Representations; American Mathematical Society: Providence, RI, USA, 1968; Available online: https://archive.org/details/n.-vilenkin-special-functions-and-theory-of-group-representations-1968 (accessed on 24 March 2025).
- Bargmann, V. Irreducible unitary representations of the Lorentz group. Ann. Math. 1947, 48, 568–640. Available online: https://www.jstor.org/stable/1969129 (accessed on 24 March 2025). [CrossRef]
- Smirnov, Y.F.; Suslov, S.K.; Shirokov, A.M. Clebsch-Gordan coefficients and Racah coefficients for the SU(2) and SU(1,1) groups as the discrete analogues of the Pöschl–Teller potential wavefunctions. J. Phys. A Math. Gen. 1984, 17, 2157–2175. [Google Scholar] [CrossRef]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1708. [Google Scholar] [CrossRef]
- Lough, J.; Schreiber, E.; Bergamin, F.; Grote, H.; Mehmet, M.; Vahlbruch, H.; Affeldt, C.; Brinkmann, M.; Bisht, A.; Kringel, V.; et al. First demonstration of 6 dB quantum noise reduction in a kilometer-scale gravitational wave observatory. Phys. Rev. Lett. 2021, 126, 041102. [Google Scholar] [CrossRef]
- Kwiat, P.G.; Mattle, K.; Weinfurter, H.; Zeilinger, A.; Sergienko, A.V.; Shih, Y. New high-iintensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 1995, 75, 4337–4341. [Google Scholar] [CrossRef]
- Vinet, L.; Zhedanov, A. Representations of the Schrödinger group and matrix orthogonal polynomials. J. Phys. A 1998, 44, 355201. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.F.; Li, Y.Q.; Chen, Y.; Liu, W.M. Solitons in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic and complex potential. Phys. Rev. A 2008, 78, 023608. [Google Scholar] [CrossRef]
- Kevrekidis, P.G.; Theocharis, G.; Frantzeskakis, D.J.; Malomed, B.A. Feshbach resonance management for Bose–Einstein condensates. Phys. Rev. Lett. 2003, 90, 230401. [Google Scholar] [CrossRef]
- Vacanti, G.; Pugnetti, S.; Didier, N.; Paternostro, M.; Palma, G.M.; Fazio, R.; Vedral, V. Photon production from the vacuum: Linking the dynamical Casimir effect to the Kibble–Zurek mechanism. Phys. Rev. Lett. 2012, 108, 093603. [Google Scholar] [CrossRef]
- Olver, F.W.J. Asymptotics and Special Functions; Academic Press, Inc./Elsevier, Inc.: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Extrait de différentes lettres de Mr. d’Alembert á Mr. de la Grange. Mémoires de L’Académie Royale des Sciences et des Belles-Lettres 1763, 19; In Histoire de L’Académie Royale des Sciences et des Belles-Lettres; Haude et Spener, Berlin, Prussia, 1770; pp. 235–254. Available online: https://archive.org/details/berlin-histoire-1763-pub1770 (accessed on 24 March 2025).
- Suite de l’Extrait de différentes lettres de Mr. d’Alembert á Mr. de la Grange. Mémoires de L’Académie Royale des Sciences et des Belles-Lettres 1763, 19; In Histoire de L’Académie Royale des Sciences et des Belles-Lettres; Haude et Spener, Berlin, Prussia, 1770; pp. 255–277. Available online: https://archive.org/details/berlin-histoire-1763-pub1770 (accessed on 24 March 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanfear, N.A.; Suslov, S.K. The Time-Dependent Schrödinger Equation, Riccati Equation, and Airy Functions. Physics 2025, 7, 19. https://doi.org/10.3390/physics7020019
Lanfear NA, Suslov SK. The Time-Dependent Schrödinger Equation, Riccati Equation, and Airy Functions. Physics. 2025; 7(2):19. https://doi.org/10.3390/physics7020019
Chicago/Turabian StyleLanfear, Nathan A., and Sergei K. Suslov. 2025. "The Time-Dependent Schrödinger Equation, Riccati Equation, and Airy Functions" Physics 7, no. 2: 19. https://doi.org/10.3390/physics7020019
APA StyleLanfear, N. A., & Suslov, S. K. (2025). The Time-Dependent Schrödinger Equation, Riccati Equation, and Airy Functions. Physics, 7(2), 19. https://doi.org/10.3390/physics7020019