Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications
Abstract
1. Introduction
2. Experimental Setup and Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsieh, T.-L.; Guo, W.-H.; Chang, M.-Y.; Huang, W.-Y.; Wen, H.-Y. Electric field-assisted filling of sulfonated polymers in ePTFE backing material for fuel cell. Membr. J. 2022, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Noto, V.D. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Venkitesan Sakthivel, V.; Yoo, D.J. Enhanced solid-electrolyte interface efficiency for practically viable hydrogen-air fuel cell systems. J. Energy Chem. 2025, 100, 356–368. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Ito, K.; Kobayashi, Y.; Takimoto, N.; Takeoka, Y.; Ohira, A. Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells. Polymer 2008, 49, 3091–3097. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Ohira, A.; Kobayashi, Y. Free volume and oxygen permeability in polymers related to polymer electrolyte fuel cells. Mater. Sci. Forum 2009, 607, 58–60. [Google Scholar] [CrossRef]
- Mohamed, H.F.M. Positron annihilation techniques as probes for investigation of the polymer electrolyte membranes with different ion exchange capacities. J. Egypt. Soc. Basic Sci.-Phys. 2024, 1, 66–82. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Kobayashi, Y.; Kuroda, S.; Ohira, A. Positronium lifetimes and gas permeation in Aquivion® for fuel cells. Mater. Sci. Forum 2013, 733, 61–64. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Abdel-Hady, E.E.; Abdel-Hamed, M.O.; Said, M. Microstructure characterization of Nafion HP JP as a proton exchange membrane for fuel cell: Positron annihilation study. Acta Phys. Pol. A 2017, 132, 1543–1547. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Kuroda, S.; Kobayashi, Y.; Oshima, N.; Suzuki, R.; Ohira, A. Possible presence of hydrophilic SO3H nanoclusters on the surface of dry ultrathin Nafion® films: A positron annihilation study. Phys. Chem. Chem. Phys. 2013, 15, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 2019, 43, 8739–8752. [Google Scholar] [CrossRef]
- Yin, C.; Li, J.; Zhou, Y.; Zhang, H.; Fang, P.; He, C. Phase separation and development of proton transport pathways in metal oxide nanoparticle/Nafion composite membranes during water uptake. J. Phys. Chem. C 2018, 122, 9710–9717. [Google Scholar] [CrossRef]
- Maiti, T.K.; Maiti, T.K.; Singh, J.; Dixit, P.; Majhi, J.; Bhushan, S.; Bandyopadhyay, A.; Chattopadhyay, S. Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review. Chem. Engin. J. Adv. 2022, 12, 100372. [Google Scholar] [CrossRef]
- Tang, H.; Pan, M.; Wang, X.; Ruan, Y. Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochim. Acta 2007, 52, 5304–5311. [Google Scholar] [CrossRef]
- Vinothkannan, M.; Kim, A.R.; Ramakrishnan, S.; Yu, Y.-T.; Yoo, D.J. Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: The impact of filler on power density, chemical durability and hydrogen permeability of membrane. Compos. B Engin. 2021, 215, 108828. [Google Scholar] [CrossRef]
- Lin, H.-L.; Yu, T.L.; Han, F.-H. A method for improving ionic conductivity of Nafion membranes and its application to PEMFC. J. Polym. Res. 2006, 13, 379–385. [Google Scholar] [CrossRef]
- Mareev, S.; Gorobchenko, A.; Ivanov, D.; Anokhin, D.; Nikonenko, V. Ion and water transport in ion-exchange membranes for power generation systems: Guidelines for modeling. Int. J. Mol. Sci. 2023, 24, 34. [Google Scholar] [CrossRef] [PubMed]
- Manso, A.P.; Marzo, F.F.; Barranco, J.; Garikano, X.; Mujika, M.G. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. Int. J. Hydrogen Energy 2012, 37, 15256–15287. [Google Scholar] [CrossRef]
- Teixeira, F.C.; de Sá, A.I.; Teixeira, A.P.; Rangel, C.M. Enhanced proton conductivity of Nafion-azolebisphosphonate membranes for PEM fuel cells. New J. Chem. 2019, 43, 15249–15257. [Google Scholar] [CrossRef]
- Barique, M.A.; Tsuchida, E.; Ohira, A.; Tashiro, K. Effect of elevated temperatures on the states of water and their correlation with the proton conductivity of Nafion. ACS Omega 2018, 3, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Zhai, W.; Yu, J.; He, J.; Maurer, F.H. Free volume and crystallinity of poly (ethylene naphthalate) treated in pressurized carbon dioxide. Polymer 2010, 51, 146–152. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Abdel-Hady, E.E.; Mohamed, S.S. Temperature dependence of the free volume in polytetrafluoroethylene studied by positron annihilation spectroscopy. Radiat. Phys. Chem. 2007, 76, 160–164. [Google Scholar] [CrossRef]
- Kamel, M.S.; Mohamed, H.F.M.; Abdel-Hamed, M.O.; Abdel-Hady, E.E. Characterization and evaluation of Nafion HP JP as proton exchange membrane: Transport properties, nanostructure, morphology, and cell performance. J. Solid State Electrochem. 2019, 23, 2639–2656. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Abdel-Hady, E.E.; Abdel-Hamed, M.O.; Kamel, M.S. Impact of ultraviolet radiation on the performance of polymer electrolyte membrane. J. Solid State Electrochem. 2020, 24, 1217–1229. [Google Scholar] [CrossRef]
- Abdel-Hady, E.E.; Mohamed, H.F.M.; Abdel-Hamed, M.O.; Gomaa, M.M. Physical and electrochemical properties of PVA/TiO2 nanocomposite membrane. Adv. Polym. Technol. 2018, 37, 3842–3853. [Google Scholar] [CrossRef]
- El-Gamal, S.; El Sayed, A.M.; Abdel-Hady, E.E. Effect of cobalt oxide nanoparticles on the nano-scale free volume and optical properties of biodegradable CMC/PVA films. J. Polym. Environ. 2018, 26, 2536–2545. [Google Scholar] [CrossRef]
- Gomaa, M.M.; Hugenschmidt, C.; Dickmann, M.; Abdel-Hady, E.E.; Mohamed, H.F.M.; Abdel-Hamed, M.O. Cross-linked PVA/SSA proton exchange membranes: Correlation of physiochemical properties with the free volume determined by positron annihilation spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 28287–28299. [Google Scholar] [CrossRef]
- Ohira, A.; Kuroda, S.; Mohamed, H.F.M.; Tavernier, B. Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films. Phys. Chem. Chem. Phys. 2013, 15, 11494–11500. [Google Scholar] [CrossRef]
- Cooper, K. Progress toward accurate through-plane membrane resistance and conductivity measurement. ECS Trans. 2009, 25, 995–1007. [Google Scholar] [CrossRef]
- Park, M.J.; Balsara, N.P. Anisotropic proton conduction in aligned block copolymer electrolyte membranes at equilibrium with humid air. Macromolecules 2010, 43, 292–298. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Nie, L.; Liu, X.; Chang, L. Modification of Nafion membrane by Pd-impregnation via electric field. J. Power Sources 2012, 216, 526–529. [Google Scholar] [CrossRef]
- Taha, H.G.; Mohamed, H.F.M. Study of the nanostructure of γ-irradiated high-density polyethylene/carbon black composite and its durability as geo membrane. Polym. Adv. Technol. 2020, 31, 1581–1590. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Abdel-Hady, E.E.; Abdel-Hamed, M.O. Proton conductivity and free volume properties in per-fluorinated sulfonic acid/PTFE copolymer for fuel cell. Acta Phys. Pol. A 2017, 132, 1509–1514. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Kobayashi, Y.; Kuroda, C.S.; Ohira, A. Effects of ion-exchange on free volume and oxygen permeation in Nafion for fuel cells. J. Phys. Chem. B 2009, 113, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.I.; Tanaka, K.; Katsube, M.; Sueoka, O.; Ito, Y. Positronium formation in various polyimides. Radiat. Phys. Chem. 1993, 41, 497–502. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, H.-J.; Krishnan, N.N.; Lee, S.-Y.; Hwang, S.Y.; Kim, D.; Jeong, K.J.; Lee, J.; Cho, E.; Lee, J.; et al. Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operations. J. Power Sources 2006, 160, 353–358. [Google Scholar] [CrossRef]
- Kirkegaard, P.; Eldrup, M.; Mogensen, O.E.; Pedersen, N.J. Program system for analysing positron lifetime spectra and angular correlation curves. Comput. Phys. Commun. 1981, 23, 307–335. [Google Scholar] [CrossRef]
- Olsen, J.V.; Kirkegaard, P.; Pedersen, N.J.; Eldrup, M. PALSfit: A new program for the evaluation of positron lifetime spectra. Phys. Status Solidi C 2007, 4, 4004–4006. [Google Scholar] [CrossRef]
- Ito, K.; Oka, T.; Kobayashi, Y.; Shirai, Y.; Wada, K.; Matsumoto, M.; Fujinami, M.; Hirade, T.; Honda, Y.; Hosomi, H.; et al. Interlaboratory comparison of positron annihilation lifetime measurements for synthetic fused silica and polycarbonate. J. Appl. Phys. 2008, 104, 026102. [Google Scholar] [CrossRef]
- Ito, K.; Oka, T.; Kobayashi, Y.; Shirai, Y.; Wada, K.; Matsumoto, M.; Fujinami, M.; Hirade, T.; Honda, Y.; Hosomi, H.; et al. Interlaboratory comparison of positron annihilation lifetime measurements. Mater. Sci. Forum 2009, 607, 248–250. [Google Scholar] [CrossRef]
- Jean, J.Y.; Mallon, P.E.; Schrader, D.M. (Eds.) Principles and Applications of Positron and Positronium Chemistry; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2003. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; El-Sayed, A.M.A.; Hussien, A.Z. On irradiated poly (ethylene naphthalate) studied by positron annihilation lifetime spectroscopy. Mater. Sci. Forum 2001, 363–365, 325–327. [Google Scholar] [CrossRef]
- Hmamm, M.F.M.; Zedan, I.T.; Mohamed, H.F.M.; Hanafy, T.A.; Bekheet, A.E. Study of the nanostructure of free volume and ionic conductivity of polyvinyl alcohol doped with NaI. Polym. Adv. Technol. 2021, 32, 173–182. [Google Scholar] [CrossRef]
- Toa, S.T. Positronium annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499–5510. [Google Scholar] [CrossRef]
- Eldrup, M.; Lightbody, D.; Sherwood, J.N. The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981, 63, 51–58. [Google Scholar] [CrossRef]
- Nakanishi, H.; Wang, S.-J.; Jean, Y.-C. Microscopic surface tension studied by positron annihilation. In Positron Annihilation Studies of Fluids; Sharma, S.C., Ed.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1988; pp. 292–298. [Google Scholar]
- Kobayashi, Y.; Ito, K.; Oka, T.; He, C.; Mohamed, H.F.M.; Suzuki, R.; Ohdaira, T. Application of positron beams to the study of positronium-forming solids. Appl. Surf. Sci. 2008, 255, 174–178. [Google Scholar] [CrossRef]
- Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Meth. Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 1996, 37, 235–244. [Google Scholar] [CrossRef]
- Dlubek, G.; Supej, M.; Bondarenko, V.; Pionteck, J.; Pompe, G.; Krause-Rehberg, R.; Emri, I.; Dlubek, G. Ortho-positronium lifetime distribution analyzed with MELT and LT and free volume in poly (ecaprolactone) during glass transition, melting, and crystallization. J. Polym. Sci. B Polym. Phys. 2003, 41, 3077–3088. [Google Scholar] [CrossRef]
- El-Desoky, M.M.; Abdel-Hady, E.E.; Mohamed, H.F.M.; Hassanien, M.H.M.; Abdallah, N.; Harby, A.E. Annealing effects on the structural, positron annihilation parameters, and electrical properties of Fe2O3-PbO2-TeO2 glasses. Phys. Scr. 2024, 99, 035934. [Google Scholar] [CrossRef]
- Elsharkawy, M.R.; Mohamed, H.F.M.; Hassanien, M.H.; Gomaa, M.M. Humidity effect on the transport properties of per-fluorinated sulfonic acid/PTFE proton exchange membranes: Positron annihilation study. Polym. Adv. Technol. 2022, 33, 952–965. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A. Positron lifetime spectroscopy of lithium tetraborate Li2B4O7 glass. J. Non-Cryst. Solids 2017, 471, 338–343. [Google Scholar] [CrossRef]
- Shantarovich, V.P.; Goldanskii, V.I. Positron annihilation in free volume elements of polymer structures. Hyperfine Interact. 1998, 116, 67–81. [Google Scholar] [CrossRef]
- Lin, J.; Wycisk, R.; Pintauro, P.N.; Kellner, M. Stretched recast Nafion for direct methanol fuel cells. Electrochem. Solid-State Lett. 2007, 10, B19–B22. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Ito, Y.; Imai, M. Change of distribution of free volume holes during crystallization of poly(ethylene terephthalate) revealed by positron annihilation lifetime spectroscopy. J. Chem. Phys. 1996, 105, 4841–4845. [Google Scholar] [CrossRef]
- Awad, S.; Abdel-Hady, E.E.; Mohamed, H.F.M.; Elsharkawy, Y.S.; Gomaa, M.M. Evaluation of transport mechanism and nanostructure of non-perfluorinated PVA/sPTA proton exchange membrane for fuel cell application. Polym. Adv. Technol. 2022, 33, 3339–3349. [Google Scholar] [CrossRef]
- Mogensen, O.E. Positron Annihilation in Chemistry; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- Mohamed, H.F.M. Study of the effect of electric field on positron annihilation parameters in polymers. Radiat. Phys. Chem. 2003, 68, 449–452. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Mohamed, H.F.M.; Ohira, A. Positronium formation in aromatic polymer electrolytes for fuel cells. J. Phys. Chem. B 2009, 113, 5698–5701. [Google Scholar] [CrossRef] [PubMed]
- Eldrup, M.; Jensen, K.O. Positron trapping rates into cavities in Al-temperature and size effects. Phys. Stat. Sol. A 1987, 102, 145–152. [Google Scholar] [CrossRef]
- Dryzek, J. Application of positron annihilation spectroscopy studies of bismuth and subsurface zone induced by sliding. In Bismuth—Advanced Applications and Defects Characterization; Zhou, Y., Dong, F., Jin, S., Eds.; InTech: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Brandt, W.; Reinheimer, J. Impurity screening in amorphous semiconductors. Phys. Lett. A 1971, 35, 107–108. [Google Scholar] [CrossRef]
- Mohammed, W.M.; Awad, S.; Abdel-Hady, E.E.; Mohamed, H.F.M.; Elsharkawy, Y.S.; Elsharkawy, M.R.M. Nanostructure analysis and dielectric properties of PVA/sPTA proton exchange membrane for fuel cell applications: Positron lifetime study. Radiat. Phys. Chem. 2023, 208, 110942. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. C Polym. Symp. 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Davidson, D.W.; Cole, R.H. Dielectric relaxation in glycerine. J. Chem. Phys. 1950, 18, 1417. [Google Scholar] [CrossRef]
- Feldman, Y.; Puzenko, A.; Ryabov, Y. Non-Debye dielectric relaxation in complex materials. Chem. Phys. 2002, 284, 139–168. [Google Scholar] [CrossRef]
- Shioya, Y.; Mashimo, S. Comparison between interpretations of dielectric behavior of poly (vinyl acetate) by the coupling model and the Havriliak–Negami equation. J. Chem. Phys. 1987, 87, 3173–3177. [Google Scholar] [CrossRef]
- West, A.R. Solid State Chemistry and Its Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2022. [Google Scholar]
- Qin, M.; Zhang, L.; Wu, H. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Kanwal, F.; Ramay, S.M.; Mahmood, A.; Atiq, S.; Al-Zaghayer, Y.S. High dielectric constant study of TiO2-polypyrrole composites with low contents of filler prepared by in situ polymerization. Adv. Condens. Matter Phys. 2016, 2016, 4793434. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Abdel-Hady, E.E.; Mohammed, W.M. Investigation of transport mechanism and nanostructure of Nylon-6,6/PVA blend polymers. Polymers 2022, 15, 107. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; Hassnien, M.H.M.; Gomaa, A.G.R.; Aboud, A.A.A.; Ragab, S.A.M.; Ahmed, A.A.; Saeed, W.R.M. The electric field effect on the nanostructure, transport, mechanical, and thermal properties of polymer electrolyte membrane. J. Polym. Res. 2021, 28, 216. [Google Scholar] [CrossRef]
- Abdel-Hamed, M.O.; Draz, A.A.; Khalaf, M.; El-Hossary, F.M.; Mohamed, H.F.M.; Abdel-Hady, E.E. Effect of plasma pretreatment and graphene oxide ratios on the transport properties of PVA/PVP membranes for fuel cells. Sci. Rep. 2024, 14, 1092. [Google Scholar] [CrossRef]
- Ben Taher, Y.; Oueslati, A.; Maaloul, N.K.; Khirouni, K.; Gargouri, M. Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A Mater. Sci. Process. 2015, 120, 1537–1543. [Google Scholar] [CrossRef]
- Menyawy, E.M.; Zedan, I.T.; Nawar, H.H. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl) acetonitrile. Phys. B Condens. Matter 2014, 437, 58–62. [Google Scholar] [CrossRef]
- Banerjee, S.; Kumar, A. Dielectric behavior and charge transport in polyaniline nanofiber reinforced PMMA composites. J. Phys. Chem. Solids 2010, 71, 381–388. [Google Scholar] [CrossRef]
- Mahmoud, K.H.; Abdel-Rahim, F.M.; Atef, K.; Saddeek, Y.B. Dielectric dispersion in lithium–bismuth-borate glasses. Curr. Appl. Phys. 2011, 11, 55–60. [Google Scholar] [CrossRef]
- Mahfoudh, N.; Karoui, K.; Gargouri, M.; BenRhaiem, A. Optical and electrical properties and conduction mechanism of [(CH3)2NH2]2CoCl4. Appl. Organomet. Chem. 2020, 34, e5404. [Google Scholar] [CrossRef]
- Dhahri, A.; Dhahri, E.; Hlil, E.K. Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 2018, 8, 9103–9111. [Google Scholar] [CrossRef] [PubMed]
- Lanfredi, S.; Saia, P.S.; Lebullenger, R.; Hernandes, A.C. Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: Analysis by impedance spectroscopy. Solid State Ion. 2002, 146, 329–339. [Google Scholar] [CrossRef]
- Priya, S.S.; Karthika, M.; Selvasekarapandian, S.; Manjuladevi, R. Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 2018, 24, 3861–3875. [Google Scholar] [CrossRef]
- Abdel-Hady, E.E.; Gamal, A.; Hamdy, H.; Shaban, M.; Abdel-Hamed, M.O.; Mohammed, M.A.; Mohammed, W.M. Methanol electro oxidation on Ni–Pt–CrO/CNFs composite: Morphology, structural, and electrochemical characterization. Sci. Rep. 2023, 13, 4870. [Google Scholar] [CrossRef]
- Awad, S.; Kaouach, H.; Mohammed, M.A.; Abdel-Hady, E.E.; Mohammed, W.M. Fabrication of bimetallic Ni-Ag/CNFs nanoparticles as a catalyst in direct alcohol fuel cells (DAFCs). Polym. Adv. Technol. 2023, 34, 1723–1738. [Google Scholar] [CrossRef]
- Bondarenko, A.S.; Ragoisha, G.A. Inverse problem in potentiodynamic electrochemical impedance. In Progress in Chemometrics Research; Pomerantsev, A.L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2005; pp. 89–102. [Google Scholar]
- Prado-Fernández, J.; Rodrıguez-Vázquez, J.A.; Tojo, E.; Andrade, J.M. Quantitation of κ-, ι-and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Anal. Chim. Acta 2003, 480, 23–37. [Google Scholar] [CrossRef]
- Elsharkawy, M.R.; Mohammed, W.M. Effect of the electric field on the free volume investigated from positron annihilation lifetime and dielectric properties of sulfonated PVC/PMMA. Polym. Adv. Technol. 2024, 35, e6519. [Google Scholar] [CrossRef]
- Elsharkawy, M.R.M.; Ibrahim, S.; Mohammed, W.M.M. Effect of V2O5 incorporation on the structural, electrical, and conduction properties of sulfonated PVC/PMMA blend: Positron annihilation study. Egypt. J. Phys. 2024, 52, 65–79. [Google Scholar] [CrossRef]
- Avramov, S.G.; Lefterova, E.; Penchev, H.; Sinigersky, V.; Slavcheva, E. Comparative study on the proton conductivity of perfluorosulfonic and polybenzimidazole based polymer electrolyte membranes. Bulg. Chem. Commun. 2016, 48, 43–50. Available online: http://www.bcc.bas.bg/BCC_Contens_Volume_48-B_Special.html (accessed on 21 November 2024).
- Abdel-Hady, E.E.; Mohamed, H.F.M. Microstructure changes of poly(vinyl chloride) investigated by positron annihilation techniques. Polym. Degrad. Stab. 2002, 77, 449–456. [Google Scholar] [CrossRef]
Electric Field (MV/m) | Degree of Crystallinity (%) |
---|---|
as received | 20.2 |
0 | 39.2 |
40 | 34.4 |
80 | 32.2 |
140 | 30.3 |
Electric Field (MV/m) | Barrier Height, Wh (10−3 eV) |
---|---|
as received | 0.310 |
0 | 0.282 |
40 | 0.272 |
80 | 0.250 |
140 | 0.287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, H.F.M.; Abdel-Hady, E.E.; Hassanien, M.H.M.; Mohammed, W.M. Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications. Physics 2024, 6, 1345-1365. https://doi.org/10.3390/physics6040083
Mohamed HFM, Abdel-Hady EE, Hassanien MHM, Mohammed WM. Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications. Physics. 2024; 6(4):1345-1365. https://doi.org/10.3390/physics6040083
Chicago/Turabian StyleMohamed, Hamdy F. M., Esam E. Abdel-Hady, Mohamed H. M. Hassanien, and Wael M. Mohammed. 2024. "Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications" Physics 6, no. 4: 1345-1365. https://doi.org/10.3390/physics6040083
APA StyleMohamed, H. F. M., Abdel-Hady, E. E., Hassanien, M. H. M., & Mohammed, W. M. (2024). Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications. Physics, 6(4), 1345-1365. https://doi.org/10.3390/physics6040083