Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Nafion® 112

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7965 KiB  
Article
Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications
by Hamdy F. M. Mohamed, Esam E. Abdel-Hady, Mohamed H. M. Hassanien and Wael M. Mohammed
Physics 2024, 6(4), 1345-1365; https://doi.org/10.3390/physics6040083 - 17 Dec 2024
Viewed by 1442
Abstract
A systematic study was carried out on Nafion® 112 membranes to evaluate the effects of different electric field strengths on the structural and electrical properties of the membranes. The membranes were subjected to different electric field strengths (0, 40, 80, and 140 [...] Read more.
A systematic study was carried out on Nafion® 112 membranes to evaluate the effects of different electric field strengths on the structural and electrical properties of the membranes. The membranes were subjected to different electric field strengths (0, 40, 80, and 140 MV/m) at a temperature of 90 °C. Proton conductivity was measured using an LCR meter, revealing that conductivity values varied with the electric field strengths, with the optimal conductivity observed at 40 MV/m. Positron annihilation lifetime (PAL) spectroscopy provided insights into the free volume structure of the membranes, showing an exponential increase in the hole volume size as the electric field strength increased. It was also found that the positronium intensity of the Nafion® 112 membranes was influenced by their degree of crystallinity, which decreased with higher electric field strengths. This indicates complex interactions between structural changes and the effects of the electric field. Dielectric studies of the membranes were characterized over a frequency range of 50 Hz to 5 MHz, demonstrating adherence to Jonscher’s law. The Jonscher’s power law’s s-parameter values increased with the electric field strength, suggesting a transition from a hopping conduction mechanism to more organized ionic transport. Overall, the study emphasizes the relationship between the free volume, crystallinity, and macroscopic characteristics, such as ionic conductivity. The study highlights the potential to adjust membrane performance by varying the electric field. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

12 pages, 21731 KiB  
Article
Electrochemical Analysis of Polymer Membrane with Inorganic Nanoparticles for High-Temperature PEM Fuel Cells
by DongWoong Choi
Membranes 2022, 12(7), 680; https://doi.org/10.3390/membranes12070680 - 30 Jun 2022
Cited by 10 | Viewed by 3009
Abstract
In order to solve the challenge that battery performance rapidly deteriorates at a high temperature condition of 100 °C or higher, ZrO2-TiO2 (ZT) with various Zr:Ti ratios synthesized by a sol-gel method were impregnated in a Nafion membrane. Through material [...] Read more.
In order to solve the challenge that battery performance rapidly deteriorates at a high temperature condition of 100 °C or higher, ZrO2-TiO2 (ZT) with various Zr:Ti ratios synthesized by a sol-gel method were impregnated in a Nafion membrane. Through material characterization, a unique ZT crystal phase peak with a Zr-O-Ti bond was identified, and the band range associated with this bond and intrinsic functional group region could be identified. These prepared powders were blended with 10% (w/w) Nafion-water dispersion to prepare composite Nafion membranes (NZTs). The water uptake increased and the ion exchange capacity decreased as the TiO2 content increased in the NZTs in which particles were uniformly distributed. These results were superior to those of the conventional Nafion 112. The electrochemical properties of all membranes was measured using a polarization curve in a single cell with a reaction area of 9 cm2, and the operating conditions in humidified H2/air was 120 °C under 50% relative humidity (RH) and 2 atm. The composite membrane cell with nanoparticles of a Zr:Ti ratio of 1:3 (NZT13) exhibited the best electrochemical characteristics. These results can be explained by the improved physicochemical properties of NZT13, such as optimized water content and ion exchange capacity, strong intermolecular forces acting between water and nanofillers (δ), and increased tortuosity by the fillers (τ). The results of this study show that the NZT membrane can replace a conventional membrane under high-temperature and low-humidity conditions. To examine the effect of the content of the inorganic nanomaterials in the composite membrane, a composite membrane (NZT-20, NZT-30) having an inorganic nano-filler content of 20 or 30% (w/w) was also prepared. The performance was high in the order of NZT13, NZT-20, and NZT-30. This shows that not only the operating conditions but also the particle content can significantly affect the performance. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes)
Show Figures

Figure 1

15 pages, 2790 KiB  
Article
DMFC Performance of Polymer Electrolyte Membranes Prepared from a Graft-Copolymer Consisting of a Polysulfone Main Chain and Styrene Sulfonic Acid Side Chains
by Nobutaka Endo, Yoshiaki Ogawa, Kohei Ukai, Yuriko Kakihana and Mitsuru Higa
Energies 2016, 9(8), 658; https://doi.org/10.3390/en9080658 - 19 Aug 2016
Cited by 6 | Viewed by 6729
Abstract
Polymer electrolyte membranes (PEMs) for direct methanol fuel cell (DMFC) applications were prepared from a graft-copolymer (PSF-g-PSSA) consisting of a polysulfone (PSF) main chain and poly(styrene sulfonic acid) (PSSA) side chains with various average distances between side chains (Lav) [...] Read more.
Polymer electrolyte membranes (PEMs) for direct methanol fuel cell (DMFC) applications were prepared from a graft-copolymer (PSF-g-PSSA) consisting of a polysulfone (PSF) main chain and poly(styrene sulfonic acid) (PSSA) side chains with various average distances between side chains (Lav) and side chain lengths (Lsc). The polymers were synthesized by grafting ethyl p-styrenesulfonate (EtSS) on macro-initiators of chloromethylated polysulfone with different contents of chloromethyl (CM) groups, and by changing EtSS content in the copolymers by using atom transfer radical polymerization (ATRP). The DMFC performance tests using membrane electrode assemblis (MEAs) with the three types of the PEMs revealed that: a PSF-g-PSSA PEM (SF-6) prepared from a graft copolymer with short average distances between side chains (Lav) and medium Lsc had higher DMFC performance than PEMs with long Lav and long Lsc or with short Lav and short Lsc. SF-6 had about two times higher PDmax (68.4 mW/cm2) than Nafion® 112 at 30 wt % of methanol concentration. Furthermore, it had 58.2 mW/cm2 of PDmax at 50 wt % of methanol concentration because of it has the highest proton selectivity during DMFC operation of all the PSF-g-PSSA PEMs and Nafion® 112. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cells 2016)
Show Figures

Figure 1

Back to TopTop