Electromagnetic Casimir–Polder Interaction for a Conducting Cone
Abstract
:1. Introduction
2. Review of Casimir–Polder Wedge
3. Electromagnetic Cone Green’s Function
4. Electromagnetic Cone Casimir–Polder Energy
5. Anisotropic Polarizability
6. Results and Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Sukenik, C.I.; Boshier, M.G.; Cho, D.; Sandoghdar, V.; Hinds, E.A. Measurement of the Casimir–Polder force. Phys. Rev. Lett. 1993, 70, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Harber, D.M.; Obrecht, J.M.; McGuirk, J.M.; Cornell, E.A. Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys. Rev. A 2005, 72, 033610. [Google Scholar] [CrossRef]
- Langbein, D. Theory of Van der Waals Attraction; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar] [CrossRef]
- Lambrecht, A.; Maia Neto, P.A.; Reynaud, S. The Casimir effect within scattering theory. New J. Phys. 2006, 8, 243. [Google Scholar] [CrossRef]
- Emig, T.; Jaffe, R.L.; Kardar, M.; Scardicchio, A. Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 2006, 96, 080403. [Google Scholar] [CrossRef] [PubMed]
- Kenneth, O.; Klich, I. Opposites attract: A theorem about the Casimir force. Phys. Rev. Lett. 2006, 97, 160401. [Google Scholar] [CrossRef] [PubMed]
- Emig, T.; Graham, N.; Jaffe, R.; Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 2007, 99, 170403. [Google Scholar] [CrossRef] [PubMed]
- Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D 2009, 80, 085021. [Google Scholar] [CrossRef]
- Deutsch, D.; Candelas, P. Boundary effects in quantum field theory. Phys. Rev. D 1979, 20, 3063–3080. [Google Scholar] [CrossRef]
- Brevik, I.; Lygren, M. Casimir effect for a perfectly conducting wedge. Ann. Phys. 1996, 251, 157–179. [Google Scholar] [CrossRef]
- Helliwell, T.M.; Konkowski, D.A. Vacuum fluctuations outside cosmic strings. Phys. Rev. D 1986, 34, 1918–1920. [Google Scholar] [CrossRef] [PubMed]
- Oberhettinger, F. Diffraction of waves by a wedge. Commun. Pure Appl. Math. 1954, 7, 551–563. [Google Scholar] [CrossRef]
- Carslaw, H.S. The scattering of sound waves by a cone. Math. Ann. 1914, 75, 133–147. [Google Scholar] [CrossRef]
- Felsen, L. Plane-wave scattering by small-angle cones. IEEE Trans. Anten. Propag. 1957, 5, 121–129. [Google Scholar] [CrossRef]
- Maghrebi, M.F.; Rahi, S.J.; Emig, T.; Graham, N.; Jaffe, R.L.; Kardar, M. Analytical results on Casimir forces for conductors with edges and tips. Proc. Natl. Acad. Sci. USA 2011, 108, 6867–6871. [Google Scholar] [CrossRef]
- Yakubovich, S.B. Index Transforms; World Scientific: Singapore, 1996. [Google Scholar] [CrossRef]
- Krüger, M.; Bimonte, G.; Emig, T.; Kardar, M. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys. Rev. B 2012, 86, 115423. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Proximity force approximation for the Casimir energy as a derivative expansion. Phys. Rev. D 2011, 84, 105031. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Casimir–Polder interaction for gently curved surfaces. Phys. Rev. D 2014, 90, 081702. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Jaffe, R.L.; Kardar, M. Casimir forces beyond the proximity approximation. Europhys. Lett. (EPL) 2012, 97, 50001. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Jaffe, R.L.; Kardar, M. Spectroscopic probe of the van der Waals interaction between polar molecules and a curved surface. Phys. Rev. A 2016, 94, 022509. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T.; Kardar, M. Material dependence of Casimir forces: Gradient expansion beyond proximity. Appl. Phys. Lett. 2012, 100, 074110. [Google Scholar] [CrossRef]
- Rodriguez, A.; Ibanescu, M.; Iannuzzi, D.; Joannopoulos, J.D.; Johnson, S.G. Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques. Phys. Rev. A 2007, 76, 032106. [Google Scholar] [CrossRef]
- Homer Reid, M.T. Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett. 2009, 103, 040401. [Google Scholar] [CrossRef] [PubMed]
- Homer Reid, M.T.; White, J.; Johnson, S.G. Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries. Phys. Rev. A 2013, 88, 022514. [Google Scholar] [CrossRef]
- Bimonte, G.; Emig, T. Unifying theory for Casimir forces: Bulk and surface formulations. Universe 2021, 7, 225. [Google Scholar] [CrossRef]
- Emig, T.; Bimonte, G. Multiple scattering expansion for dielectric media: Casimir effect. Phys. Rev. Lett. 2023, 130, 200401. [Google Scholar] [CrossRef] [PubMed]
- Brevik, I.; Lygren, M.; Marachevsky, V. Casimir–Polder effect for a perfectly conducting wedge. Ann. Phys. 1998, 267, 134–142. [Google Scholar] [CrossRef]
- Milton, K.A.; Abalo, E.K.; Parashar, P.; Pourtolami, N.; Brevik, I.; Ellingsen, S.Å. Casimir–Polder repulsion near edges: Wedge apex and a screen with an aperture. Phys. Rev. A 2011, 83, 062507. [Google Scholar] [CrossRef]
- Milton, K.A.; Abalo, E.K.; Parashar, P.; Pourtolami, N.; Brevik, I.; Ellingsen, S.Å. Repulsive Casimir and Casimir–Polder forces. J. Phys. Math. Theor. 2012, 45, 374006. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: San Diego, CA, USA, 2007; Available online: https://www.sciencedirect.com/book/9780123736376/table-of-integrals-series-and-products (accessed on 15 September 2023).
- Oberhettinger, F.; Higgins, T.P. Tables of Lebedev, Mehler and Generalized Mehler Transforms; Boeing Scientific Research Laboratories: Washington, DC, USA, 1961; Available online: https://apps.dtic.mil/sti/tr/pdf/AD0267210.pdf (accessed on 15 September 2023).
- Milton, K.A. Casimir–Polder forces in inhomogeneous backgrounds. J. Opt. Soc. Am. B 2019, 36, C41–C45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graham, N. Electromagnetic Casimir–Polder Interaction for a Conducting Cone. Physics 2023, 5, 1003-1012. https://doi.org/10.3390/physics5040065
Graham N. Electromagnetic Casimir–Polder Interaction for a Conducting Cone. Physics. 2023; 5(4):1003-1012. https://doi.org/10.3390/physics5040065
Chicago/Turabian StyleGraham, Noah. 2023. "Electromagnetic Casimir–Polder Interaction for a Conducting Cone" Physics 5, no. 4: 1003-1012. https://doi.org/10.3390/physics5040065
APA StyleGraham, N. (2023). Electromagnetic Casimir–Polder Interaction for a Conducting Cone. Physics, 5(4), 1003-1012. https://doi.org/10.3390/physics5040065