Resonant Fast-Alfvén Wave Coupling in a 3D Coronal Arcade
Abstract
:1. Introduction
2. Model and Method
2.1. Equilibrium and Coordinates
2.2. Linearised Equations
2.3. Boundary Conditions
2.4. Normal Modes
2.5. Numerical Details
3. Results
3.1. Location of Resonant Alfvén Waves
3.2. Polarisation of Resonant Alfvén Waves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Southwood, D.J. Some features of field line resonances in the magnetosphere. Planet. Space Sci. 1974, 22, 483–491. [Google Scholar] [CrossRef]
- Goossens, M.; Erdélyi, R.; Ruderman, M.S. Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 2011, 158, 289–338. [Google Scholar] [CrossRef]
- Van Doorsselaere, T.; Srivastava, A.K.; Antolin, P.; Magyar, N.; Vasheghani Farahani, S.; Tian, H.; Kolotkov, D.; Ofman, L.; Guo, M.; Arregui, I.; et al. Coronal heating by MHD waves. Space Sci. Rev. 2020, 216, 140. [Google Scholar] [CrossRef]
- Allan, W.; White, S.P.; Poulter, E.M. Impulse-excited hydromagnetic cavity and field-line resonances in the magnetosphere. Planet. Space Sci. 1986, 34, 371–385. [Google Scholar] [CrossRef]
- Poedts, S.; Goossens, M.; Kerner, W. Numerical simulation of coronal heating by resonant absorption of Alfvén waves. Sol. Phys. 1989, 123, 83–115. [Google Scholar] [CrossRef]
- Goossens, M.; Ruderman, M.S.; Hollweg, J.V. Dissipative MHD solutions for resonant Alfvén waves in 1-dimensional magnetic flux tubes. Sol. Phys. 1995, 157, 75–102. [Google Scholar] [CrossRef]
- Wright, A.N.; Allan, W. Structure, phase motion, and heating within Alfvén resonances. J. Geophys. Res. Space Phys. 1996, 101, 17399–17408. [Google Scholar] [CrossRef]
- Wright, A.N.; Thompson, M.J. Analytical treatment of Alfvén resonances and singularities in nonuniform magnetoplasmas. Phys. Plasmas 1994, 1, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Tirry, W.J.; Goossens, M. Dissipative MHD solutions for resonant Alfvén waves in two-dimensional poloidal magnetoplasmas. J. Geophys. Res. Space Phys. 1995, 100, 23687–23694. [Google Scholar] [CrossRef]
- Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J.L.; Wright, A.N. Solar prominences embedded in flux ropes: Morphological features and dynamics from 3D MHD simulations. Astrophys. J. 2016, 820, 125. [Google Scholar] [CrossRef] [Green Version]
- Degeling, A.W.; Rankin, R.; Kabin, K.; Rae, I.J.; Fenrich, F.R. Modeling ULF waves in a compressed dipole magnetic field. J. Geophys. Res. Space Phys. 2010, 115, A10212. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.N.; Elsden, T. The theoretical foundation of 3D Alfvén resonances: Normal modes. Astrophys. J. 2016, 833, 230. [Google Scholar] [CrossRef]
- Degeling, A.W.; Rae, I.J.; Watt, C.E.J.; Shi, Q.Q.; Rankin, R.; Zong, Q.G. Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density. J. Geophys. Res. Space Phys. 2018, 123, 1086–1099. [Google Scholar] [CrossRef] [Green Version]
- Elsden, T.; Wright, A.; Degeling, A. A review of the theory of 3-D Alfvén (field line) resonances. Front. Astron. Space Sci. 2022, 9, 917817. [Google Scholar] [CrossRef]
- Wright, A.; Degeling, A.W.; Elsden, T. Resonance maps for 3D Alfvén waves in a compressed dipole field. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030294. [Google Scholar] [CrossRef]
- Wright, A.N.; Elsden, T. Simulations of MHD wave propagation and coupling in a 3-D magnetosphere. J. Geophys. Res. Space Phys. 2020, 125, e27589. [Google Scholar] [CrossRef]
- Halberstadt, G.; Goedbloed, J.P. The continuous Alfvén spectrum of line-tied coronal loops. Astron. Astrophys. 1993, 280, 647–660. Available online: https://ui.adsabs.harvard.edu/abs/1993A%26A...280..647H (accessed on 27 February 2023).
- Prokopyszyn, A.P.K.; Wright, A.N.; Hood, A.W. Line-tied boundary conditions can cause resonant absorption models to generate unphysically large boundary layers. Astrophys. J. 2021, 914, 15. [Google Scholar] [CrossRef]
- Elsden, T.; Wright, A.N. The theoretical foundation of 3-D Alfvén resonances: Time-dependent solutions. J. Geophys. Res. Space Phys. 2017, 122, 3247–3261. [Google Scholar] [CrossRef] [Green Version]
- Elsden, T.; Wright, A.N. The Broadband excitation of 3-D Alfvén resonances in a MHD waveguide. J. Geophys. Res. Space Phys. 2018, 123, 530–547. [Google Scholar] [CrossRef] [Green Version]
- Elsden, T.; Wright, A.N. The effect of fast normal mode structure and magnetopause forcing on FLRs in a 3-D waveguide. J. Geophys. Res. Space Phys. 2019, 124, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Dungey, J.W. Electrodynamics of the Outer Atmosphere: Report to National Science Foundation on Work Carried on under Grant NSF-G450; Pennsylvania State University, Ionosphere Research Laboratory: State College, PA, USA, 1954. [Google Scholar]
- Elsden, T. Numerical Modelling of Ultra Low Frequency Waves in Earth’s Magnetosphere. Ph.D. Thesis, University of St Andrews, St. Andrews, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Singer, H.J.; Southwood, D.J.; Walker, R.J.; Kivelson, M.G. Alfvén wave resonances in a realistic magnetospheric magnetic field geometry. J. Geophys. Res. Space Phys. 1981, 86, 4589–4596. [Google Scholar] [CrossRef] [Green Version]
- Leonovich, A.S.; Mazur, V.A. A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere. Planet. Space Sci. 1993, 41, 697–717. [Google Scholar] [CrossRef]
- Klimushkin, D.Y.; Leonovich, A.S.; Mazur, V.A. On the propagation of transversally small-scale standing Alfvén waves in a three-dimensionally inhomogeneous magnetosphere. J. Geophys. Res. Space Phys. 1995, 100, 9527–9534. [Google Scholar] [CrossRef]
- Elsden, T.; Wright, A.N. Evolution of high-m poloidal Alfvén waves in a dipole magnetic field. J. Geophys. Res. Space Phys. 2020, 125, e28187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, A.; Elsden, T. Resonant Fast-Alfvén Wave Coupling in a 3D Coronal Arcade. Physics 2023, 5, 310-321. https://doi.org/10.3390/physics5010023
Wright A, Elsden T. Resonant Fast-Alfvén Wave Coupling in a 3D Coronal Arcade. Physics. 2023; 5(1):310-321. https://doi.org/10.3390/physics5010023
Chicago/Turabian StyleWright, Andrew, and Thomas Elsden. 2023. "Resonant Fast-Alfvén Wave Coupling in a 3D Coronal Arcade" Physics 5, no. 1: 310-321. https://doi.org/10.3390/physics5010023
APA StyleWright, A., & Elsden, T. (2023). Resonant Fast-Alfvén Wave Coupling in a 3D Coronal Arcade. Physics, 5(1), 310-321. https://doi.org/10.3390/physics5010023