Low-Energy Coulomb Excitation for the Shell Model
Abstract
:1. Introduction
2. Basics of Low-Energy Coulomb Excitation
2.1. First-Order Effects
2.2. Higher-Order Effects
2.2.1. Multi-Step Excitation and Relative Signs
2.2.2. Reorientation Effect and Spectroscopic Quadrupole Moments
2.3. Quadrupole Sum Rules
3. Examples of Recent Low-Energy Coulomb-Excitation Studies Relevant for the Shell Model
3.1. Superdeformation in 42Ca
3.2. Shape Coexistence, Triaxiality, and the N = 50 Shell Closure in Germanium and Zinc Isotopes
3.3. Shape Coexistence in 40 Nuclei
3.4. Evolution of Collectivity in 50 Nuclei
3.5. Heavier Collective Nuclei: Triaxiality in 130Xe and 140Sm
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGATA | Advanced GAmma Tracking Array |
CUORE | Cryogenic Underground Laboratory for Rare Events |
ENSDF | Evaluated Nuclear Structure Data File |
GRETINA | Gamma-Ray Energy Tracking In-beam Nuclear Array |
HIE-ISOLDE | High Intensity and Energy ISOLDE |
INFN | Istituto Nazionale di Fisica Nucleare (National Institute for Nuclear Physics) |
ISOLDE | Isotope Separator On-Line DEvice |
IUAC | Inter-University Accelerator Centre |
LNL | Legnaro National Laboratories |
LSSM | Large-Scale Shell Model |
MCSM | Monte-Carlo Shell Model |
NSCL | National Superconducting Cyclotron Laboratory |
ORNL | Oak Ridge National Laboratory |
ReA3 | Re-accelerator facility |
RIB | Radioactive Ion Beam |
SD | Superdeformed |
SNO+ | Sudbury Neutrino Observatory Plus |
T-Plot | Tsunoda-Plot |
References
- Kumar, K. Intrinsic quadrupole moments and shapes of nuclear ground states and excited states. Phys. Rev. Lett. 1972, 28, 249. [Google Scholar] [CrossRef]
- Clément, E.; Zielińska, M.; Görgen, A.; Korten, W.; Péru, S.; Libert, J.; Goutte, H.; Hilaire, S.; Bastin, B.; Bauer, C.; et al. Spectroscopic quadrupole moments in 96,98Sr: Evidence for shape coexistence in neutron-rich strontium isotopes at N=60. Phys. Rev. Lett. 2016, 116, 022701. [Google Scholar] [CrossRef]
- Hadyńska-Klȩk, K.; Napiorkowski, P.J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J.J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; et al. Superdeformed and triaxial states in 42Ca. Phys. Rev. Lett. 2016, 117, 062501. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, L.P.; Butler, P.A.; Scheck, M.; Hayes, A.B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Bönig, S.; et al. Studies of pear shaped nuclei using accelerated radioactive beams. Nature 2013, 497, 199. [Google Scholar] [CrossRef]
- Zielińska, M.; Gaffney, L.P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.J.; Pakarinen, J.; Van Duppen, P.; Warr, N. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code. Eur. Phys. J. A 2016, 52, 99. [Google Scholar] [CrossRef] [Green Version]
- Görgen, A.; Korten, W. Coulomb excitation studies of shape coexistence in atomic nuclei. J. Phys. G Nucl. Part. Phys. 2010, 43, 024002. [Google Scholar] [CrossRef]
- Cline, D. Nuclear shapes studied by Coulomb excitation. Annu. Rev. Nucl. Part. Sci. 1986, 36, 683. [Google Scholar] [CrossRef]
- Srebrny, J.; Czosnyka, T.; Karczmarczyk, W.; Napiorkowski, P.; Droste, C.; Wollersheim, H.-J.; Emling, H.; Grein, H.; Kulessa, R.; Cline, D.; et al. E1, E2, E3 and M1 information from heavy ion Coulomb excitation. Nucl. Phys. A 1993, 557, 663c. [Google Scholar] [CrossRef]
- Alder, K.; Winther, A. Electromagnetic Excitation; North-Holland: Amsterdam, The Netherlands, 1975. [Google Scholar]
- De Boer, J.; Eichler, J. The Reorientation Effect. In Advances in Nuclear Physics; Plenum Press: New York, NY, USA, 1968; Volume 1, Chapter 1; pp. 1–65. [Google Scholar]
- Clément, E.; Görgen, A.; Korten, W.; Bouchez, E.; Chatillon, A.; Delaroche, J.-P.; Girod, M.; Goutte, H.; Hürstel, A.; Le Coz, Y.; et al. Shape coexistence in neutron-deficient krypton isotopes. Phys. Rev. C. 2007, 75, 054313. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, M.; Hadyńska-Klȩk, K. Nuclear shapes studied with low-energy Coulomb excitation. EPJ Web Conf. 2018, 178, 02014. [Google Scholar] [CrossRef]
- Henderson, J. Convergence of electric quadrupole rotational invariants from the nuclear shell model. Phys. Rev. C 2020, 102, 054306. [Google Scholar] [CrossRef]
- Rocchini, M.; Hadyńska-Klȩk, K.; Nannini, A.; Goasduff, A.; Zielińska, M.; Testov, D.; Rodriguez, T.R.; Gargano, A.; Nowacki, F.; De Gregorio, G.; et al. Onset of triaxial deformation in 66Zn and properties of its first excited 0+ state studied by means of Coulomb excitation. Phys. Rev. C 2021, 103, 014311. [Google Scholar] [CrossRef]
- Schmidt, T.; Heyde, K.L.G.; Blazhev, A.; Jolie, J. Shell-model-based deformation analysis of light cadmium isotopes. Phys. Rev. C 2017, 94, 014302. [Google Scholar] [CrossRef] [Green Version]
- Morrison, L.; Hadyńska-Klȩk, K.; Podolyák, Z.; Doherty, D.T.; Gaffney, L.P.; Kaya, L.; Próchniak, L.; Samorajczyk-Pyśk, J.; Srebrny, J.; Berry, T.; et al. Quadrupole deformation of 130Xe measured in a Coulomb-excitation experiment. Phys. Rev. C 2020, 102, 054304. [Google Scholar] [CrossRef]
- Wrzosek-Lipska, K.; Próchniak, L.; Zielińska, M.; Srebrny, J.; Hadyńska-Klȩk, K.; Iwanicki, J.; Kisieliński, M.; Kowalczyk, M.; Napiorkowski, P.J.; Piȩtak, D.; et al. Electromagnetic properties of 100Mo: Experimental results and theoretical description of quadrupole degrees of freedom. Phys. Rev. C 2012, 86, 064305. [Google Scholar] [CrossRef]
- Hadyńska-Klȩk, K.; Napiorkowski, P.J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J.J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; et al. Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA. Phys. Rev. C 2018, 97, 024326. [Google Scholar] [CrossRef] [Green Version]
- Akkoyun, S.; Algora, A.; Alikhani, B.; Ameil, F.; de Angelis, G.; Arnold, L.; Astier, A.; Ataç, A.; Aubert, Y.; Aufranc, C.; et al. AGATA—Advanced GAmma Tracking Array. Nucl. Instrum. Methods Phys. Res. A 2012, 668, 26. [Google Scholar] [CrossRef]
- Caurier, E.; Menéndez, J.; Nowacki, F.; Poves, A. Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40Ca: A shell-model challenge. Phys. Rev. C 2007, 75, 054317. [Google Scholar] [CrossRef] [Green Version]
- Toh, Y.; Czosnyka, T.; Oshima, M.; Hayakawa, T.; Hatsukawa, Y.; Matsuda, M.; Katakura, J.; Shinohara, N.; Sugawara, M.; Kusakari, H. Shape coexistence in even–even Ge isotopes—Complete spectroscopy with Coulomb excitation. J. Nucl. Sci. Technol. 2002, 39, 497. [Google Scholar] [CrossRef]
- Heyde, K.; Wood, J.L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 2011, 83, 1467. [Google Scholar] [CrossRef]
- Sugawara, M.; Toh, Y.; Czosnyka, T.; Oshima, M.; Hayakawa, T.; Kusakari, H.; Hatsukawa, Y.; Katakura, J.; Shinohara, N.; Matsuda, M.; et al. Multiple Coulomb excitation of a 70Ge beam and the interpretation of the state as a deformed intruder. Eur. Phys. J. A 2003, 16, 409. [Google Scholar] [CrossRef]
- Ayangeakaa, A.D.; Janssens, R.V.F.; Wu, C.Y.; Allmond, J.M.; Wood, J.L.; Zhu, S.; Albers, M.; Almaraz-Calderon, S.; Bucher, B.; Carpenter, M.P.; et al. Shape coexistence and the role of axial asymmetry in 72Ge. Phys. Lett. B 2016, 754, 254. [Google Scholar] [CrossRef]
- Toh, Y.; Czosnyka, T.; Oshima, M.; Hayakawa, T.; Kusakari, H.; Sugawara, M.; Hatsukawa, Y.; Katakura, J.; Shinohara, N.; Matsuda, M. Coulomb excitation of 74Ge beam. Eur. Phys. J. A 2000, 9, 353. [Google Scholar] [CrossRef]
- Toh, Y.; Czosnyka, T.; Oshima, M.; Hayakawa, T.; Kusakari, H.; Sugawara, M.; Osa, A.; Koizumi, M.; Hatsukawa, Y.; Katakura, J.; et al. Multiple Coulomb excitation of a 76Ge beam. J. Phys. G Nucl. Part. Phys. 2001, 27, 1475. [Google Scholar] [CrossRef]
- Passoja, A.; Julin, R.; Kantele, J.; Luontama, M.; Vergnes, M. E0 transitions in 70Ge and shape-coexistence interpretation of even-mass Ge isotopes. Nucl. Phys. A 1985, 438, 413. [Google Scholar] [CrossRef]
- Koizumi, M.; Seki, A.; Toh, Y.; Osa, A.; Utsuno, Y.; Kimura, A.; Oshima, M.; Hayakawa, T.; Hatsukawa, Y.; Katakura, J.; et al. Multiple Coulomb excitation experiment of 68Zn. Nucl. Phys. A 2004, 730, 46. [Google Scholar] [CrossRef]
- Henderson, J.; Wu, C.Y.; Ash, J.; Brown, B.A.; Bender, P.C.; Elder, R.; Elman, B.; Gade, A.; Grinder, M.; Iwasaki, H.; et al. Triaxiality in selenium-76. Phys. Rev. C 2019, 99, 054313. [Google Scholar] [CrossRef]
- Hayakawa, T.; Toh, Y.; Oshima, M.; Osa, A.; Koizumi, M.; Hatsukawa, Y.; Utsuno, Y.; Katakura, J.; Matsuda, M.; Morikawa, T.; et al. Projectile Coulomb excitation of 78Se. Phys. Rev. C 2003, 67, 064310. [Google Scholar] [CrossRef] [Green Version]
- Ayangeakaa, A.D.; Janssens, R.V.F.; Zhu, S.; Little, D.; Henderson, J.; Wu, C.Y.; Hartley, D.J.; Albers, M.; Auranen, K.; Bucher, B.; et al. Evidence for rigid triaxial deformation in 76Ge from a model-independent analysis. Phys. Rev. Lett. 2019, 123, 102501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caurier, E.; Nowacki, F.; Poves, A. Nuclear-structure aspects of the neutrinoless ββ-decays. Eur. Phys. J. A 2008, 36, 195. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, T.R.; Martínez-Pinedo, G. Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. Phys. Rev. Lett. 2010, 105, 252503. [Google Scholar] [CrossRef] [Green Version]
- ENSDF, NNDC, Brookhaven National Laboratory. Available online: https://www.nndc.bnl.gov/ensdf/ (accessed on 1 June 2021).
- Mărginean, N.; Little, D.; Tsunoda, Y.; Leoni, S.; Janssens, R.V.F.; Fornal, B.; Otsuka, T.; Michelagnoli, C.; Stan, L.; Crespi, F.C.L.; et al. Shape coexistence at zero spin in 64Ni driven by the monopole tensor interaction. Phys. Rev. Lett. 2020, 125, 102502. [Google Scholar] [CrossRef] [PubMed]
- Tracy, J.L., Jr.; Winger, J.A.; Rasco, B.C.; Silwal, U.; Siwakoti, P.; Rykaczewski, K.P.; Grzywacz, R.; Batchelder, J.C.; Bingham, C.R.; Brewer, N.T.; et al. Updated β-decay measurement of neutron-rich 74Cu. Phys. Rev. C 2018, 98, 034309. [Google Scholar] [CrossRef] [Green Version]
- Recchia, F.; Chiara, C.J.; Janssens, R.V.F.; Weisshaar, D.; Gade, A.; Walters, W.B.; Albers, M.; Alcorta, M.; Bader, V.M.; Baugher, T.; et al. Configuration mixing and relative transition rates between low-spin states in 68Ni. Phys. Rev. C 2013, 88, 041302. [Google Scholar] [CrossRef]
- Poves, A.; Nowacki, F.; Alhassid, Y. Limits on assigning a shape to a nucleus. Phys. Rev. C 2020, 101, 054307. [Google Scholar] [CrossRef]
- Honma, M.; Otsuka, T.; Mizusaki, T.; Hjorth-Jensen, M. New effective interaction for f5pg9-shell nuclei. Phys. Rev. C 2009, 80, 064323. [Google Scholar] [CrossRef]
- Tsunoda, Y.; Otsuka, T.; Shimizu, N.; Honma, M.; Utsuno, Y. Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure. Phys. Rev. C 2014, 89, 031301(R). [Google Scholar] [CrossRef] [Green Version]
- Leoni, S.; Fornal, B.; Marginean, N.; Sferrazza, M.; Tsunoda, Y.; Otsuka, T. Shape coexistence and shape isomerism in the Ni isotopic chain. Acta Phys. Pol. B 2019, 50, 605. [Google Scholar] [CrossRef]
- Van de Walle, J.; Aksouh, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T.E.; Davinson, T.; Delahaye, P.; et al. Low-energy Coulomb excitation of neutron-rich zinc isotopes. Phys. Rev. C 2009, 79, 014309. [Google Scholar] [CrossRef] [Green Version]
- Van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T.E.; Davinson, T.; et al. Coulomb excitation of neutron-rich Zn isotopes: First observation of the state in 80Zn. Phys. Rev. Lett. 2007, 99, 142501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla-Rodal, E.; Galindo-Uribarri, A.; Baktash, C.; Batchelder, J.C.; Beene, J.R.; Bijker, R.; Brown, B.A.; Castaños, R.; Fuentes, B.; Gomez del Campo, J.; et al. B(E2)↑ measurements for radioactive neutron-rich Ge isotopes: Reaching the N=50 closed shell. Phys. Rev. Lett. 2005, 94, 122501. [Google Scholar] [CrossRef] [Green Version]
- Grodzins, L. The uniform behaviour of electric quadrupole transition probabilities from first 2+ states in even–even nuclei. Phys. Lett. 1962, 2, 88. [Google Scholar] [CrossRef]
- Honma, M.; Otsuka, T.; Brown, B.A.; Mizusaki, T. New effective interaction for pf-shell nuclei and its implications for the stability of the N=Z=28 closed core. Phys. Rev. C 2004, 69, 034335. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Honma, M.; Mizusaki, T. Structure of the N=Z=28 closed shell studied by Monte Carlo Shell Model calculation. Phys. Rev. Lett. 1998, 81, 1588. [Google Scholar] [CrossRef]
- Taniuchi, R.; Santamaria, C.; Doornenbal, P.; Obertelli, A.; Yoneda, K.; Authelet, G.; Baba, H.; Calvet, D.; Château3, F.; Corsi, A.; et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 2019, 569, 52. [Google Scholar] [CrossRef] [Green Version]
- Sieja, K.; Nowacki, F.; Langanke, K.; Martínez-Pinedo, G. Shell model description of zirconium isotopes. Phys. Rev. C 2009, 79, 064310. [Google Scholar] [CrossRef]
- Togashi, T.; Tsunoda, Y.; Otsuka, T.; Shimizu, N. Quantum Phase Transition in the shape of Zr isotopes. Phys. Rev. Lett. 2016, 117, 172502. [Google Scholar] [CrossRef]
- Marchini, N.; Rocchini, M.; Nannini, A.; Doherty, D.T.; Zielińska, M.; Garrett, P.E.; Hadyńska-Klȩk, K.; Testov, D.; Goasduff, A.; Benzoni, G.; et al. Shape coexistence in 94Zr studied via Coulomb excitation. Eur. Phys. J. Web Conf. 2019, 223, 01038. [Google Scholar] [CrossRef]
- Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D.T.; Bastin, B.; Bauer, C.; et al. Low-energy Coulomb excitation of 96,98Sr beams. Phys. Rev. C 2016, 94, 054326. [Google Scholar] [CrossRef]
- Zielińska, M.; Czosnyka, T.; Choiński, J.; Iwanicki, J.; Napiorkowski, P.; Srebrny, J.; Toh, Y.; Oshima, M.; Osa, A.; Utsuno, Y.; et al. Electromagnetic structure of 98Mo. Nucl. Phys. A 2002, 712, 3. [Google Scholar] [CrossRef]
- Freeman, S.J.; Sharp, D.K.; McAllister, S.A.; Kay, B.P.; Deibel, C.M.; Faestermann, T.; Hertenberger, R.; Mitchell, A.J.; Schiffer, J.P.; Szwec, S.V.; et al. Experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double-β decay in 100Mo. Phys. Rev. C 2017, 96, 054325. [Google Scholar] [CrossRef] [Green Version]
- Allmond, J.M.; Stuchbery, A.E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D.C.; Batchelder, J.C.; Bingham, C.R.; Howard, M.E.; Liang, J.F.; Manning, B.; et al. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments. Phys. Rev. C 2015, 92, 041303(R). [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R.K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; et al. No evidence of reduced collectivity in Coulomb-excited Sn isotopes. Phys. Rev. C 2017, 96, 054318. [Google Scholar] [CrossRef]
- Kumar, R.; Doornenbal, P.; Jhingan, A.; Bhowmik, R.K.; Muralithar, S.; Appannababu, S.; Garg, R.; Gerl, J.; Górska, M.; Kaur, J.; et al. Enhanced → E2 transition strength in 112Sn. Phys. Rev. C 2010, 81, 024306. [Google Scholar] [CrossRef]
- Cederkäll, J.; Ekström, A.; Fahlander, C.; Hurst, A.M.; Hjorth-Jensen, M.; Ames, F.; Banu, A.; Butler, P.A.; Davinson, T.; Datta Pramanik, U.; et al. Sub-barrier Coulomb excitation of 110Sn and its implications for the 100Sn shell closure. Phys. Rev. Lett. 2007, 98, 172501. [Google Scholar] [CrossRef] [Green Version]
- Ekström, A.; Cederkäll, J.; Fahlander, C.; Hjorth-Jensen, M.; Ames, F.; Butler, P.A.; Davinson, T.; Eberth, J.; Fincke, F.; Görgen, A.; et al. → transition strengths in 106Sn and 108Sn. Phys. Rev. Lett. 2008, 101, 012502. [Google Scholar] [CrossRef] [Green Version]
- Radford, D.C.; Baktash, C.; Beene, J.R.; Fuentes, B.; Galindo-Uribarri, A.; Gomez del Campo, J.; Gross, C.J.; Halbert, M.L.; Larochelle, Y.; Lewis, T.A.; et al. Nuclear structure studies with heavy neutron-rich RIBS at the HRIBF. Nucl. Phys. A 2004, 746, 83c. [Google Scholar] [CrossRef]
- Allmond, J.M.; Radford, D.C.; Baktash, C.; Batchelder, J.C.; Galindo-Uribarri, A.; Gross, C.J.; Hausladen, P.A.; Lagergren, K.; Larochelle, Y.; Padilla-Rodal, E.; et al. Coulomb excitation of 124,126,128Sn. Phys. Rev. C 2012, 84, 061303(R). [Google Scholar] [CrossRef] [Green Version]
- Rosiak, D.; Seidlitz, M.; Reiter, P.; Naïdja, H.; Tsunoda, Y.; Togashi, T.; Nowacki, F.; Otsuka, T.; Colò, G.; Arnswald, K.; et al. Enhanced quadrupole and octupole strength in doubly magic 132Sn. Phys. Rev. Lett. 2018, 121, 252501. [Google Scholar] [CrossRef] [Green Version]
- Togashi, T.; Tsunoda, Y.; Otsuka, T.; Shimizu, N.; Honma, M. Novel shape evolution in Sn isotopes from magic numbers 50 to 82. Phys. Rev. Lett. 2018, 121, 062501. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, M.; Valiente-Dobón, J.J.; Goasduff, A.; Nowacki, F.; Zuker, A.P.; Bazzacco, D.; Lopez-Martens, A.; Clément, E.; Benzoni, G.; Braunroth, T.; et al. Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in 106,108Sn. Phys. Lett. B 2020, 806, 135474. [Google Scholar] [CrossRef]
- Zuker, A.P. Quadrupole dominance in the light Sn and in the Cd isotopes. Phys. Rev. C 2021, 103, 024322. [Google Scholar] [CrossRef]
- Dufflo, J.; Zuker, A.P. The nuclear monopole Hamiltonian. Phys. Rev. C 1999, 59, R2347. [Google Scholar] [CrossRef]
- Fielding, H.W.; Anderson, R.E.; Zafiratos, C.D.; Lind, D.A.; Cecil, F.E.; Wieman, H.H.; Alford, W.P. 0+ states observed in Cd and Sn nuclei with the (3He, n) reaction. Nucl. Phys. A 1977, 281, 389. [Google Scholar] [CrossRef]
- Wrzosek-Lipska, K.; Próchniak, L.; Garrett, P.E.; Yates, S.W.; Wood, J.L.; Napiorkowski, P.J.; Abraham, T.; Allmond, J.M.; Bello Garrote, F.L.; Bidaman, H.; et al. Quadrupole deformation of 110Cd studied with Coulomb excitation. Acta Phys. Pol. B 2020, 51, 789. [Google Scholar] [CrossRef]
- Ekström, A.; Cederkäll, J.; DiJulio, D.D.; Fahlander, C.; Hjorth-Jensen, M.; Blazhev, A.; Bruyneel, B.; Butler, P.A.; Davinson, T.; Eberth, J.; et al. Electric quadrupole moments of the states in 100,102,104Cd. Phys. Rev. C 2009, 80, 054302. [Google Scholar] [CrossRef] [Green Version]
- Boelaert, N.; Smirnova, N.; Heyde, K.; Jolie, J. Shell model description of the low-lying states of the neutron deficient Cd isotopes. Phys. Rev. C 2007, 75, 014316. [Google Scholar] [CrossRef]
- Rhodes, D.; Brown, B.A.; Henderson, J.; Gade, A.; Ash, J.; Bender, P.C.; Elder, R.; Elman, B.; Grinder, M.; Hjorth-Jensen, M.; et al. Exploring the role of high- j configurations in collective observables through the Coulomb excitation of 106Cd. Phys. Rev. C 2021, 103, L051301. [Google Scholar] [CrossRef]
- Klintefjord, M.; Hadyńska-Klȩk, K.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; et al. Structure of low-lying states in 140Sm studied by Coulomb excitation. Phys. Rev. C 2016, 93, 054303. [Google Scholar] [CrossRef]
- Caurier, E.; Nowacki, F.; Poves, A.; Sieja, K. Collectivity in the light xenon isotopes: A shell model study. Phys. Rev. C 2010, 82, 064304. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Stone, N.J.; Stone, J.R.; Towner, I.S.; Hjorth-Jensen, M. Magnetic moments of the states around 132Sn. Phys. Rev. C 2005, 71, 044317. [Google Scholar] [CrossRef] [Green Version]
- Kaia, L.; Vogt, A.; Reiter, P.; Müller-Gatermann, C.; Siciliano, M.; Coraggio, L.; Itaco, N.; Gargano, A.; Arnswald, K.; Bazzacco, D.; et al. Millisecond 23/2+ isomers in the N=79 isotones 133Xe and 135Ba. Phys. Rev. C 2018, 98, 054312. [Google Scholar] [CrossRef] [Green Version]
- Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Siciliano, M.; Hadyńska-Klȩk, K.; Valiente-Dobón, J.J.; Wheldon, C.; Teruya, E.; Yoshinaga, N.; et al. Isomers and high-spin structures in the N=81 isotones 135Xe and 137Ba. Phys. Rev. C 2017, 95, 024316. [Google Scholar] [CrossRef] [Green Version]
- CUORE Collaboration. Arnaboldi, C.; Avignone, F.T., III; Beeman, J.; Barucci, M.; Balata, M.; Brofferio, C.; Bucci, C.; Cebrian, S.; Creswick, R.J.; et al. CUORE: A cryogenic underground observatory for rare events. Nucl. Instrum. Methods Phys. Res. A 2004, 518, 775. [Google Scholar]
- Albanese, V.; Alves, R.; Anderson, M.R.; Andringa, S.; Anselmo, L.; Arushanova, E.; Asahi, S.; Askins, M.; Auty, D.J.; Back, A.R.; et al. The SNO+ experiment. J. Instrum. 2021, 16, P08059. [Google Scholar] [CrossRef]
- Coraggio, L.; De Angelis, L.; Fukui, T.; Gargano, A.; Itaco, N. Calculation of Gamow-Teller and two-neutrino double-β decay properties for 130Te and 136Xe with a realistic nucleon-nucleon potential. Phys. Rev. C 2017, 95, 064324. [Google Scholar] [CrossRef] [Green Version]
- Entwisle, J.P.; Kay, B.P.; Tamii, A.; Adachi, S.; Aoi, N.; Clark, J.A.; Freeman, S.J.; Fujita, H.; Fujita, Y.; Furuno, T.; et al. Change of nuclear configurations in the neutrinoless double-β decay of 130Te →130Xe and 136Xe →136Ba. Phys. Rev. C 2016, 93, 064312. [Google Scholar] [CrossRef] [Green Version]
- Kay, B.P.; Bloxham, T.; McAllister, S.A.; Clark, J.A.; Deibel, C.M.; Freedman, S.J.; Freeman, S.J.; Han, K.; Howard, A.M.; Mitchell, A.J.; et al. Valence neutron properties relevant to the neutrinoless double-β decay of 130Te. Phys. Rev. C 2013, 87, 011302(R). [Google Scholar] [CrossRef] [Green Version]
- Paschalis, S.; Lee, I.Y.; Macchiavelli, A.O.; Campbell, C.M.; Cromaz, M.; Gros, S.; Pavin, J.; Qian, J.; Clark, R.M.; Crawford, H.L.; et al. The performance of the Gamma-Ray Energy Tracking In-beam Nuclear Array GRETINA. Nucl. Instrum. Methods Phys. Res. A 2013, 709, 44. [Google Scholar] [CrossRef]
- Surman, R.; Engel, J.; Bennett, J.R.; Meyer, B.S. Source of the rare-earth element peak in r-process nucleosynthesis. Phys. Rev. Lett. 1997, 79, 1809. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchini, M.; Zielińska, M. Low-Energy Coulomb Excitation for the Shell Model. Physics 2021, 3, 1237-1253. https://doi.org/10.3390/physics3040078
Rocchini M, Zielińska M. Low-Energy Coulomb Excitation for the Shell Model. Physics. 2021; 3(4):1237-1253. https://doi.org/10.3390/physics3040078
Chicago/Turabian StyleRocchini, Marco, and Magda Zielińska. 2021. "Low-Energy Coulomb Excitation for the Shell Model" Physics 3, no. 4: 1237-1253. https://doi.org/10.3390/physics3040078
APA StyleRocchini, M., & Zielińska, M. (2021). Low-Energy Coulomb Excitation for the Shell Model. Physics, 3(4), 1237-1253. https://doi.org/10.3390/physics3040078