Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes
Abstract
1. Introduction
2. Basic Derivation
3. Eigen-Modes in Spontaneously Curved Membranes
- For the sufficiently strong spontaneous curvature-induced coupling, there is an interval of the wave vectors,where the coupled-modes dispersions acquire the imaginary part, i.e., effective damping. The damping is not related to the entropy production (dissipation), since there is no any dissipative term in the action (3). The damping occurs from the redistribution of the energy of the modes.
- In the limit of weak coupling,the coupled modes remain purely propagating, and their dispersion laws read:Therefore, the curvature-induced mode coupling makes the flexural mode more rigid, and the acoustic mode becomes softer.
4. Outlook and Conclusions
Acknowledgments
Conflicts of Interest
References
- Kernes, J.; Levine, A.J. Effects of curvature on the propagation of undulatory waves in lower dimensional elastic materials. Phys. Rev. E 2021, 103, 013002. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Piran, T.; Weinberg, S. (Eds.) Statistical Mechanics of Membranes and Surfaces; World Scientific: Singapore, 1989. [Google Scholar] [CrossRef]
- Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Bowick, M.J.; Travesset, A. The statistical mechanics of membranes. Phys. Rep. 2001, 344, 255–308. [Google Scholar] [CrossRef]
- Safran, S.A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Kats, E.I.; Lebedev, V.V. Fluctuational Effects in the Dynamics of Liquid Crystals; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiment. Z. Naturforsch. 1973, 28, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46, 13–137. [Google Scholar] [CrossRef]
- Nelson, D.R.; Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Phys. France 1987, 48, 1085–1092. [Google Scholar] [CrossRef]
- Aronovitz, J.A.; Lubensky, T.C. Fluctuations of solid membranes. Phys. Rev. Lett. 1988, 60, 2634–2638. [Google Scholar] [CrossRef] [PubMed]
- Kernes, J.; Levine, A.J. Geometrically-induced localization of flexural waves on thin warped physical membranes. arXiv 2020, arXiv:2011.07152v1. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, V.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–161. [Google Scholar] [CrossRef]
- Vozmediano, M.A.H.; Katsnelson, M.I.; Guinea, F. Gauge fields in graphene. Phys. Rep. 2010, 496, 109–152. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861. [Google Scholar] [CrossRef]
- Bao, W.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C.N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–213. [Google Scholar] [CrossRef]
- Raghunathan, V.A.; Katsaras, J. Lβ′→Lc phase transition in phosphatidylcholine lipid bilayers: A disorder-order transition in two dimensions. Phys. Rev. E 1996, 54, 4446–4449. [Google Scholar] [CrossRef] [PubMed]
- Akabori, K.; Nagle, J.F. Structure of the DMPC lipid bilayer ripple phase. Soft Matter 2015, 11, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Los, J.H.; Mirlin, A.D. Stress-controlled Poisson ratio of a crystalline membrane: Application to graphene. Phys. Rev. B 2018, 97, 125402. [Google Scholar] [CrossRef]
- Saykin, D.R.; Kachorovskii, V.Y.; Burmistrov, I.S. Phase diagram of a flexible two-dimensional material. Phys. Rev. Res. 2020, 2, 043099. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kats, E.I. Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes. Physics 2021, 3, 367-371. https://doi.org/10.3390/physics3020025
Kats EI. Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes. Physics. 2021; 3(2):367-371. https://doi.org/10.3390/physics3020025
Chicago/Turabian StyleKats, Efim I. 2021. "Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes" Physics 3, no. 2: 367-371. https://doi.org/10.3390/physics3020025
APA StyleKats, E. I. (2021). Spontaneous Curvature Induced Stretching-Bending Mode Coupling in Membranes. Physics, 3(2), 367-371. https://doi.org/10.3390/physics3020025
