A Full-Fledged Analytical Solution to the Quantum Harmonic Oscillator for Undergraduate Students of Science and Engineering
Abstract
:1. Introduction
2. Discussion
- Determination of the quadratic potential ;
- Use of potential in the time-independent Schrödinger equation to obtain a dimensionless differential equation;
- Manipulation of the dimensionless differential equation to determine its solution’s form at infinity;
- Determination of the recursion relation that allows us to obtain complete solutions for the dimensionless differential equation;
- Comparing successive power coefficients for the functions and and to determine the quantization condition;
- Writing the odd and even solutions using Hermite polynomials and writing the formulas for the energy eigenvalues;
- Obtaining non-normalized eigenfunctions;
- Normalization of the eigenfunctions and graph for levels 0, 1, 2, and 10.
2.1. Determination of the Quadratic Potential
2.2. Use of Potential in the Time-Independent Schrödinger Equation to Obtain a Dimensionless Differential Equation
We can, and we must derive this term with respect to . | ||
Since is the unknown of Equation (5). should remain expressed as a derivative |
2.3. Manipulation of the Dimensionless Differential Equation to Determine Its Solution’s Form at Infinity
2.4. Determination of the Recursion Relation that Allows Us to Obtain Complete Solutions for the Dimensionless Differential Equation
- Task 1.
- We start from ;
- The first derivative is ;
- The second derivative is .
- Task 2.
- We start from ;
- The first derivative is ;
- We multiply the first derivative by : .
2.5. Comparing Successive Power Coefficients for the Functions and and to Determine the Quantization Condition
2.6. Writing the Odd and Even Solutions Using Hermite Polynomials and Writing the Formulas for the Energy Eigenvalues
2.7. Obtaining Non-Normalized Eigenfunctions
- (a)
- Evaluate in the dimensionless energy quantization condition to obtain the numerical value of ,
- (b)
- Evaluate the numerical value of in the recursion relation to obtain the Hermite coefficients corresponding to ,
- (c)
- Evaluate, in Equation (15), the coefficients obtained from the recursion relation to get the Hermite polynomial corresponding to , ,
- (d)
- Write the complete eigenfunction by multiplying and ,
- (e)
- Express the eigenfunction as by changing the variable back to ,
- (a)
- ,
- (b)
- For , we only have , which is an initial constant,
- (c)
- ,
- (d)
- ,
- (e)
- .
- (a)
- ,
- (b)
- turns out to be zero. However, will not, and we can express it in terms of ,is an initial constant,
- (c)
- ;
- (d)
- ,
- (e)
- .
- (a)
- ,
- (b)
- turns out to be zero. However, will not, and we can express it in terms of ,is an initial constant,
- (c)
- ;
- (d)
- ;To remove the fraction that multiplies , we multiply by 3 and charge the “discrepancies” to the constant ,
- (e)
- ;
- (a)
- ,
- (b)
- Since we are working with , we know will be zero. However, and will not, and we can express them in terms of ,→ initial constant;
- (c)
- ;
- (d)
- ;To remove the fraction that multiplies , we multiply by 3 and charge the “discrepancies” to the constant ,
- (e)
- ;
2.8. Normalization of the Eigenfunctions and Graph for Levels 0, 1, 2, and 10
- (a)
- Square the function : ,
- (b)
- Integrate from to : ,This integral cannot be solved by analytical methods in variable x. However, in Appendix A, we present a detailed procedure of its analytical solution in polar coordinates. We give the result below:
- (c)
- Determine the constant by equating the result of the previous integral to 1:
- (d)
- Write the wave function by inserting constant value into :
- (a)
- Square the function : ,
- (b)
- Integrate from to : ,To solve this integral, it is necessary to use the function’s definition. We describe in detail this procedure in Appendix B. We present the result below:
- (c)
- Determine the constant by equating the result of the previous integral to 1:
- (d)
- Write the wave function by inserting constant value into :
- (a)
- Square the function :
- (b)
- Integrate from to :The function is also involved in the solution of the latter integral. At this point, the student knows that one can rely on the mathematical formula book that is cited Appendix B [28] or on some mathematical software such as Wolfram Mathematica [29] to solve this kind of integral,
- (c)
- Determine the constant by equating the result of the previous integral to 1:
- (d)
- Write the wave function by inserting constant value into :
- (a)
- Write the general solution: ,
- (b)
- In the last equation, insert polynomial to get :
- (c)
- Make the appropriate change of variable from back to :
- (d)
- Square the function :
- (e)
- Integrate from to :
- (f)
- Determine the constant by equating the result of the previous integral to 1:
- (g)
- Write the wave function by inserting constant value into :
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Analytic Solution of the Integral
Appendix B. Analytic Solution of the Integral
Appendix C. Some Considerations and Wolfram Mathematica Code for the QHO Wavefunction Graphs
- Links to web-based interactive graphs:
- n = 0, 1, 2, 10 (e−): https://www.wolframcloud.com/obj/2f38b1b3-7bf8-400b-a415-e9b914895d5b
- n = 0, 1, 2, 10 (p+): https://www.wolframcloud.com/obj/291acd89-ce62-48ca-bd09-48c66fc1f9e5
Manipulate[ Plot[{C/2*x^2, Sqrt[m*C]/( 2*m) + ((m*Sqrt[C/m])^(1/4) E^(-(1/2) (x^2 m*Sqrt[C/m])))/\[Pi]^( 1/4), Sqrt[1836*m*C]/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^(1/4) E^(-(1/2) (x^2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]^(1/4)}, {x, -3, 3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red, Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True, AxesLabel -> {Position x, Subscript[\[CapitalPsi], 0]}, PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\ \(\*SuperscriptBox[\(x\), \(2\)]\)", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(0\)]\) \ electron", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(0\)]\) \ proton"}], {C, 1, 5}, {m, 0.05, 3}]
Manipulate[ Plot[{C/2*x^2, (3*Sqrt[m*C])/( 2*m) + ((m*Sqrt[C/m])^(1/4) *Sqrt[2 m*Sqrt[C/m]]*x* E^(-(1/2) (x^2 m*Sqrt[C/m])))/\[Pi]^(1/4), (3*Sqrt[1836*m*C])/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^(1/4) *Sqrt[ 1836*2 m*Sqrt[C/(1836*m)]]*x* E^(-(1/2) (x^2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]^(1/4)}, {x, -3, 3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red, Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True, AxesLabel -> {Position x, Subscript[\[CapitalPsi], 1]}, PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\ \(\*SuperscriptBox[\(x\), \(2\)]\)", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(1\)]\) \ electron", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(1\)]\) \ proton"}], {C, 1, 5}, {m, 0.05, 3}]
Manipulate[ Plot[{C/2*x^2, (5*Sqrt[m*C])/( 2*m) + ((m*Sqrt[C/m])^( 1/4) (2 m*Sqrt[C/m] x^2 - 1) E^(-(1/2) (x^2 m*Sqrt[C/m])))/( Sqrt[2] \[Pi]^(1/4)), (5*Sqrt[1836*m*C])/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^( 1/4) (1836*2 m*Sqrt[C/(1836*m)] x^2 - 1) E^(-(1/ 2) (x^2 1836*m*Sqrt[C/(1836*m)])))/( Sqrt[2] \[Pi]^(1/4))}, {x, -3, 3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red, Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True, AxesLabel -> {Position x, Subscript[\[CapitalPsi], 2]}, PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\ \(\*SuperscriptBox[\(x\), \(2\)]\)", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(2\)]\) \ electron", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(2\)]\) \ proton"}], {C, 1, 5}, {m, 0.05, 3}]
Manipulate[ Plot[{C/2*x^2, (21*Sqrt[m*C])/( 2*m) + ((m*Sqrt[C/m])^(1/4)/( 720 Sqrt[7] \[Pi]^(1/4)))*(32*(Sqrt[m*Sqrt[C/m]]*x)^10 - 720*(Sqrt[m*Sqrt[C/m]]*x)^8 + 5040*(Sqrt[m*Sqrt[C/m]]*x)^6 - 12600*(Sqrt[m*Sqrt[C/m]]*x)^4 + 9450*(Sqrt[m*Sqrt[C/m]]*x)^2 - 945)* E^(-((x^2 m*Sqrt[C/m])/2)), (21*Sqrt[1836*m*C])/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^(1/4)/( 720 Sqrt[7] \[Pi]^( 1/4)))*(32*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^10 - 720*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^8 + 5040*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^6 - 12600*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^4 + 9450*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^2 - 945)* E^(-((x^2 1836*m*Sqrt[C/(1836*m)])/2))}, {x, -3, 3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red, Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True, AxesLabel -> {Position x, Subscript[\[CapitalPsi], 10]}, PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\ \(\*SuperscriptBox[\(x\), \(2\)]\)", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(10\)]\) \ electron", "Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(10\)]\) \ proton"}], {C, 1, 5}, {m, 0.05, 3}]
Manipulate[ Plot[{C/2*x^2, Sqrt[m*C]/( 2*m) + ((m*Sqrt[C/m])^(1/4) E^(-(1/2) (x^2 m*Sqrt[C/m])))/\[Pi]^( 1/4), (3*Sqrt[m*C])/( 2*m) + ((m*Sqrt[C/m])^(1/4) *Sqrt[2 m*Sqrt[C/m]]*x* E^(-(1/2) (x^2 m*Sqrt[C/m])))/\[Pi]^(1/4), (5*Sqrt[m*C])/( 2*m) + ((m*Sqrt[C/m])^( 1/4) (2 m*Sqrt[C/m] x^2 - 1) E^(-(1/2) (x^2 m*Sqrt[C/m])))/( Sqrt[2] \[Pi]^(1/4)), (21*Sqrt[m*C])/( 2*m) + ((m*Sqrt[C/m])^(1/4)/( 720 Sqrt[7] \[Pi]^(1/4)))*(32*(Sqrt[m*Sqrt[C/m]]*x)^10 - 720*(Sqrt[m*Sqrt[C/m]]*x)^8 + 5040*(Sqrt[m*Sqrt[C/m]]*x)^6 - 12600*(Sqrt[m*Sqrt[C/m]]*x)^4 + 9450*(Sqrt[m*Sqrt[C/m]]*x)^2 - 945)* E^(-((x^2 m*Sqrt[C/m])/2))}, {x, -3, 3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Blue, Thickness[0.003]}, {Pink, Thickness[0.003]}, {Red, Thickness[0.003]}, {Brown, Thickness[0.003]}}, Axes -> True, AxesLabel -> {Position x, Subscript[\[CapitalPsi], n]}, PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\ \(\*SuperscriptBox[\(x\), \(2\)]\)", "\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(0\)]\)", "\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(1\)]\)", "\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(2\)]\)", "\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(10\)]\)"}], {C, 1, 5}, {m, 0.05, 3}]
Manipulate[ Plot[{C/2*x^2, Sqrt[1836*m*C]/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^(1/4) E^(-(1/2) (x^2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]^(1/4), ( 3*Sqrt[1836*m*C])/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^(1/4) *Sqrt[ 1836*2 m*Sqrt[C/(1836*m)]]*x* E^(-(1/2) (x^2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]^(1/4), ( 5*Sqrt[1836*m*C])/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^( 1/4) (1836*2 m*Sqrt[C/(1836*m)] x^2 - 1) E^(-(1/ 2) (x^2 1836*m*Sqrt[C/(1836*m)])))/(Sqrt[2] \[Pi]^(1/4)), ( 21*Sqrt[1836*m*C])/( 1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])^(1/4)/( 720 Sqrt[7] \[Pi]^( 1/4)))*(32*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^10 - 720*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^8 + 5040*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^6 - 12600*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^4 + 9450*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)^2 - 945)* E^(-((x^2 1836*m*Sqrt[C/(1836*m)])/2))}, {x, -3, 3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Blue, Thickness[0.002]}, {Pink, Thickness[0.002]}, {Red, Thickness[0.003]}, {Brown, Thickness[0.002]}}, Axes -> True, AxesLabel -> {Position x, Subscript[\[CapitalPsi], n]}, PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\ \(\*SuperscriptBox[\(x\), \(2\)]\)", "\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(0\)]\)", "\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(1\)]\)", "\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(2\)]\)", "\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\ \[CapitalPsi]\), \(10\)]\)"}], {C, 1, 5}, {m, 0.05, 3}]
Appendix D. Normalization Proof for Time-Dependent Schrödinger Wave Functions
References
- Lyshevski, S.E.; Andersen, J.D.; Boedo, S.; Fuller, L.; Raffaelle, R.; Savakis, A.; Skuse, G.R. Multidisciplinary Undergraduate Nano-Science, Engineering and Technology Course. In Proceedings of the 2006 Sixth IEEE Conference on Nanotechnology, Cincinnati, OH, USA, 17–20 July 2006. [Google Scholar]
- Chari, D.; Howard, R.; Bowe, B. Disciplinary Identity of Nanoscience and Nanotechnology Research-A Study of Postgraduate. Int. J. Digit. Soc. 2012, 3, 614–621. [Google Scholar] [CrossRef]
- Thornton, S.T.; Rex, A. Modern Physics for Scientists and Engineers; Cengage Learning ALL: Boston, MA, USA, 2013. [Google Scholar]
- Beiser, A. Concepts of Modern Physics; McGraw-Hill Higher Education: New York, NY, USA, 2003. [Google Scholar]
- Tipler, P.A.; Llewellyn, R.A. Modern Physics; W. H. Freeman and Company: New York, NY, USA, 2008. [Google Scholar]
- Serway, R.A.; Moses, C.J.; Moyer, C.A. Modern Physiscs; Thomson Learning: Belmont, CA, USA, 2005. [Google Scholar]
- Levine, I.N. Quantum Chemistry; Pearson Education, Inc.: Saddle River, NJ, USA, 2014. [Google Scholar]
- Taylor, P.L.; Heinonen, O. A Quantum Approach to Condensed Matter Physics; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Brehm, J.J.; Mullin, W.J. Introduction to the Structure of Matter: A Course in Modern Physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Shankar, R. Principles of Quantum Mechanics; Plenum Publishers/Kluwer Academic: New York, NY, USA, 1994. [Google Scholar]
- Liboff, R.L. Introductory Quantum Mechanics; Longman Higher Education: Boston, MA, USA, 1987. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics; Wiley-Interscience: New York, NY, USA, 1991. [Google Scholar]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Kato, T.; Tanimura, Y. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath. J. Chem. Phys. 2004, 120, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, T.H. Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum. Am. J. Phys. 2003, 71, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, R.; Quack, M. Radiative excitation of the harmonic oscillator with applications to stereomutation in chiral molecules. Z. Phys. D Atoms. Mol. Clust. 1996, 36, 229–237. [Google Scholar] [CrossRef]
- Suárez, E.; Díaz, N.; Suárez, D. Entropy Calculations of Single Molecules by Combining the Rigid–Rotor and Harmonic-Oscillator Approximations with Conformational Entropy Estimations from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2011, 7, 2638–2653. [Google Scholar] [CrossRef] [PubMed]
- Gasiorowicz, S. Quantum Physics; John Wiley & Sons, Ltd.: Essex, MA, USA, 2003. [Google Scholar]
- Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles; John Wiley & Sons, Ltd.: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Ghatak, A.; Lokanathan, S. Quantum Mechanics: Theory and Applications; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Denny, M. Harmonic oscillator quantization: Kinetic theory approach. Eur. J. Phys. 2002, 23, 183–190. [Google Scholar] [CrossRef]
- Viana-Gomes, J.; Peres, N.M.R. Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions. Eur. J. Phys. 2011, 32, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.R.M.; de Castro, A.S. A Laplace transform approach to the quantum harmonic oscillator. Eur. J. Phys. 2013, 34, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, P.H.F.; de Castro, A.S. Revisiting the quantum harmonic oscillator via unilateral Fourier transforms. Eur. J. Phys. 2016, 37, 015402. [Google Scholar] [CrossRef] [Green Version]
- Borghi, R. Quantum harmonic oscillator: An elementary derivation of the energy spectrum. Eur. J. Phys. 2017, 38, 025404. [Google Scholar] [CrossRef]
- Pérez-Jordá, J.M. On the recursive solution of the quantum harmonic oscillator. Eur. J. Phys. 2018, 39, 015402. [Google Scholar] [CrossRef] [Green Version]
- Wichmann, E.H. Quantum Physics. In Berkeley Physics Course; Mcgraw-Hill College: New York, NY, USA, 1971; Volume 4. [Google Scholar]
- Spiegel, M.R.; Liu, J. Schaum’s Mathematical Handbook of Formulas and Tables; McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
- Mathematica; Version 12.1; Software For Technical Computation; Wolfram Research: Champaign, IL, USA, 2020.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Gómez, A.; Pérez-Martínez, A.L. A Full-Fledged Analytical Solution to the Quantum Harmonic Oscillator for Undergraduate Students of Science and Engineering. Physics 2020, 2, 541-570. https://doi.org/10.3390/physics2040031
Rodríguez-Gómez A, Pérez-Martínez AL. A Full-Fledged Analytical Solution to the Quantum Harmonic Oscillator for Undergraduate Students of Science and Engineering. Physics. 2020; 2(4):541-570. https://doi.org/10.3390/physics2040031
Chicago/Turabian StyleRodríguez-Gómez, Arturo, and Ana Laura Pérez-Martínez. 2020. "A Full-Fledged Analytical Solution to the Quantum Harmonic Oscillator for Undergraduate Students of Science and Engineering" Physics 2, no. 4: 541-570. https://doi.org/10.3390/physics2040031
APA StyleRodríguez-Gómez, A., & Pérez-Martínez, A. L. (2020). A Full-Fledged Analytical Solution to the Quantum Harmonic Oscillator for Undergraduate Students of Science and Engineering. Physics, 2(4), 541-570. https://doi.org/10.3390/physics2040031