Fifty Years of the Dynamical Casimir Effect
Abstract
:1. Introduction
2. One-Dimensional Models with Moving Boundaries
2.1. Classical Fields
2.2. Quantum Fields
2.2.1. Moore’s Approach
2.2.2. The Modification of the Casimir Force
2.2.3. Generation of Quanta inside the 1D Cavity with Moving Boundary
2.2.4. Expansions over the Instantaneous Basis
2.2.5. Quantum Regime of the Wall Motion
2.3. Partially Transparent Mirrors and General Boundary Conditions in 1D
3. Three-Dimensional Models with Moving Boundaries
3.1. Single Mirror DCE
Quantum Friction for Moving Surfaces
3.2. Cavity DCE
3.2.1. Effective Hamiltonians
3.2.2. Parametric Oscillator Model
3.2.3. The Role of Intermode Interactions
3.2.4. Time-Dependent Casimir Force
3.2.5. Vector Fields in 3D Cavities
3.2.6. Saturated Regimes
4. General Parametric DCE
4.1. Circuit DCE
4.2. Analogs of DCE in Condensed Matter
4.3. DCE and Atomic Excitations
5. Experimental Proposals for the Cavity DCE
5.1. Difficulties with Real Moving Boundaries
5.2. Simulations with Semiconductor Slabs
5.3. Simulations with Linear and Nonlinear Optical Materials
5.4. Interaction with Detectors
6. DCE and Other Quantum Phenomena
6.1. Damping and Decoherence
6.2. Entanglement
6.3. Other Dynamical Effects
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, G.T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two-dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A 1976, 348, 393–414. [Google Scholar] [CrossRef]
- Davies, P.C.W.; Fulling, S.A. Radiation from moving mirrors and from black holes. Proc. R. Soc. Lond. A 1977, 356, 237–257. [Google Scholar] [CrossRef]
- Yablonovitch, E. Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-De Witt radiation and the nonadiabatic Casimir effect. Phys. Rev. Lett. 1989, 62, 1742–1745. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Klimov, A.B.; Man’ko, V.I. Nonstationary Casimir effect and oscillator energy level shift. Phys. Lett. A 1989, 142, 511–513. [Google Scholar] [CrossRef]
- Schwinger, J. Casimir energy for dielectrics. Proc. Nat. Acad. Sci. USA 1992, 89, 4091–4093. [Google Scholar] [CrossRef] [Green Version]
- Plunien, G.; Müller, B.; Greiner, W. The Casimir effect. Phys. Rep. 1986, 134, 87–193. [Google Scholar] [CrossRef]
- Milonni, P.W.; Shih, M.L. Casimir forces. Contemp. Phys. 1992, 33, 313–322. [Google Scholar] [CrossRef]
- Milonni, P.W. The Quantum Vacuum: An Introduction to Quantum Electrodynamics; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Lamoreaux, S.K. Resource letter GF-1: Casimir force. Am. J. Phys. 1999, 67, 850–861. [Google Scholar] [CrossRef]
- Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect. Phys. Rep. 2001, 353, 1–205. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific: Singapore, 2001. [Google Scholar] [CrossRef]
- Feinberg, J.; Mann, A.; Revzen, M. Casimir effect: The classical limit. Ann. Phys. 2001, 288, 103–136. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A. The Casimir effect: Recent controversies and progress. J. Phys. A: Math. Gen. 2004, 37, R209–R277. [Google Scholar] [CrossRef] [Green Version]
- Lamoreaux, S.K. The Casimir force: Background, experiments, and applications. Rep. Prog. Phys. 2005, 68, 201–236. [Google Scholar] [CrossRef]
- Brown-Hayes, M.; Brownell, J.H.; Dalvit, D.A.R.; Kim, W.J.; Lambrecht, A.; Lombardo, F.C.; Mazzitelli, F.D.; Middleman, S.M.; Nesvizhevsky, V.V.; Onofrio, R.; et al. Thermal and dissipative effects in Casimir physics. J. Phys. A: Math. Gen. 2006, 39, 6195–6208. [Google Scholar] [CrossRef] [Green Version]
- Farina, C. The Casimir effect: Some aspects. Braz. J. Phys. 2006, 36, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Buhmann, S.Y.; Welsch, D.-G.; Dispersion forces in macroscopic quantum electrodynamics. Prog. Quantum Electron. 2007, 31, 51–130. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- Babb, J.F. Casimir effects in atomic, molecular, and optical physics. Adv. At. Mol. Opt. Phys. 2010, 59, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, A.; Reynaud, S. Casimir effect: theory and experiments. Int. J. Mod. Phys. A 2012, 27, 1260013. [Google Scholar] [CrossRef]
- Palasantzas, G.; Dalvit, D.A.R.; Decca, R.; Svetovoy, V.B.; Lambrecht, A. Special issue on Casimir physics. J. Phys. Condens. Matter 2015, 27. no. 21. [Google Scholar] [CrossRef] [Green Version]
- Simpson, W.M.R.; Leonhardt, U. Force of the Quantum Vacuum: An Introduction to Casimir Physics; World Scientific: Singapore, 2015. [Google Scholar] [CrossRef]
- Jaekel, M.T.; Reynaud, S. Movement and fluctuations of the vacuum. Rep. Prog. Phys. 1997, 60, 863–887. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries. In Modern Nonlinear Optics, Part 1; Evans, M.W., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2001; pp. 309–394. [Google Scholar]
- Dodonov, V.V.; Dodonov, A.V. Quantum harmonic oscillator and nonstationary Casimir effect. J. Russ. Laser Res. 2005, 26, 445–483. [Google Scholar] [CrossRef]
- Dodonov, V.V. Dynamical Casimir effect: Some theoretical aspects. J. Phys. Conf. Ser. 2009, 161, 012027. [Google Scholar] [CrossRef]
- Dodonov, V.V. Current status of the Dynamical Casimir Effect. Phys. Scr. 2010, 82, 038105. [Google Scholar] [CrossRef] [Green Version]
- Dalvit, D.A.R.; Maia Neto, P.A.; Mazzitelli, F.D. Fluctuations, dissipation and the dynamical Casimir effect. In Casimir Physics; Dalvit, D., Milonni, P., Roberts, D., da Rosa, F., Eds.; Springer: Berlin, Germany, 2011; pp. 419–457. [Google Scholar] [CrossRef] [Green Version]
- Nation, P.D.; Johansson, J.R.; Blencowe, M.P.; Nori, F. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 2012, 84, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Nicolai, E.L. On transverse vibrations of a portion of a string of uniformly variable length. Ann. Petrograd Polytechn. Inst. 1921, 28, 273–287. (In Russian) [Google Scholar]
- Nicolai, E.L. On a dynamical illustration of the pressure of radiation. Philos. Mag. 1925, 49, 171–177. [Google Scholar] [CrossRef]
- Havelock, T.H. Some dynamical illustrations of the pressure of radiation and of adiabatic invariance. Philos. Mag. 1924, 47, 754–771. [Google Scholar] [CrossRef]
- Balazs, N.L. On the solution of the wave equation with moving boundaries. J. Math. Anal. Appl. 1961, 3, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Greenspan, H.P. A string problem. J. Math. Anal. Appl. 1963, 6, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Baranov, R.I.; Shirokov, Y.M. Electromagnetic field in an optical resonator with a movable mirror. JETP 1968, 26, 1199–1202. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/26/6/p1199?a=list.
- Vesnitskii, A.I. A one-dimensional resonator with movable boundaries. Radiophys. Quant. Electron. 1971, 14, 1124–1129. [Google Scholar] [CrossRef]
- Krasilnikov, V.N. Parametric Wave Phenomena in Classical Electrodynamics; St. Petersburg University Publ.: St. Petersburg, Russia, 1996. (In Russian) [Google Scholar]
- Vesnitskii, A.I. Waves in Systems with Moving Boundaries and Loads; Fizmatlit: Moscow, Russia, 2001. (In Russian) [Google Scholar]
- Schrödinger, E. The proper vibrations of the expanding universe. Physica 1939, 6, 899–912. [Google Scholar] [CrossRef]
- Imamura, T. Quantized meson field in a classical gravitational field. Phys. Rev. 1960, 118, 1430–1434. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes, I. Phys. Rev. 1969, 183, 1057–1068. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes, II. Phys. Rev. D 1971, 3, 346–356. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. Particle production in cosmology. JETP Lett. 1970, 12, 307–311, Reprinted in Selected Works of Yakov Borisovich Zeldovich. Volume 2: Particles, Nuclei, and the Universe; Ostriker, J.P., Barenblatt, G.I., Sunyaev, R.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1993; pp. 223–227. Available online: http://www.jetpletters.ac.ru/ps/1734/article_26352.shtml.
- Vesnitskii, A.I. The inverse problem for a one-dimensional resonator the dimensions of which vary with time. Radiophys. Quant. Electron. 1971, 14, 1209–1215 doiorg/101007/BF01035071. [Google Scholar] [CrossRef]
- Castagnino, M.; Ferraro, R. The radiation from moving mirrors: The creation and absorption of particles. Ann. Phys. 1984, 154, 1–23. [Google Scholar] [CrossRef]
- Walker, W.R.; Davies, P.C.W. An exactly soluble moving mirror problem. J. Phys. A: Math. Gen. 1982, 15, L477–L480. [Google Scholar] [CrossRef]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Shino, M.; Yoshimura, M. Moving mirror model of Hawking evaporation. Prog. Theor. Phys. 1994, 91, 839–869. [Google Scholar] [CrossRef]
- Nikishov, A.I.; Ritus, V.I. Emission of scalar photons by an accelerated mirror in 1+1-space and its relation to the radiation from an electrical charge in classical electrodynamics. JETP 1995, 81, 615–624. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/81/4/p615?a=list.
- Ritus, V.I. Functional identity of the spectra of Bose- and Fermi radiation of an accelerated mirror in 1 + 1 space and the spectra of electric and scalar charges in 3 + 1 space, and its relation to radiative reaction. JETP 1996, 83, 282–293. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/83/2/p282?a=list.
- Obadia, N.; Parentani, R. Uniformly accelerated mirrors. I. Mean fluxes. Phys. Rev. D 2003, 67, 024021. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.H.; Roman, T.A. Energy flux correlations and moving mirrors. Phys. Rev. D 2004, 70, 125008. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D 2013, 88, 025023. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Yelshibekov, K.; Ong, Y.C. On horizonless temperature with an accelerating mirror. JHEP 2017, 3, 013. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect. Phys. Rev. D 2017, 96, 125010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V. Eternal and evanescent black holes and accelerating mirror analogs. Phys. Rev. D 2018, 97, 065006. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V. Finite energy but infinite entropy production from moving mirrors. Phys. Rev. D 2019, 99, 025009. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, A. Moving mirror effects in hadronic reactions. Prog. Theor. Phys. 1979, 61, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Obadia, N.; Parentani, R. Uniformly accelerated mirrors. II. Quantum correlations. Phys. Rev. D 2003, 67, 024022. [Google Scholar] [CrossRef] [Green Version]
- Mazzitelli, F.D.; Paz, J.P.; Castagnino, M.A. Fermions between moving boundaries. Phys. Lett. B 1987, 189, 132–136. [Google Scholar] [CrossRef]
- Horibe, M. Thermal radiation of fermions by an accelerated wall. Prog. Theor. Phys. 1979, 61, 661–671. [Google Scholar] [CrossRef]
- Koehn, M. Solutions of the Klein–Gordon equation in an infinite square-well potential with a moving wall. EPL 2012, 100, 60008. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Solutions of the d’Alembert and Klein–Gordon equations confined to a region with one fixed and one moving wall. EPL 2013, 101, 60003. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Klimov, A.B. Long-time asymptotics of a quantized electromagnetic field in a resonator with oscillating boundary. Phys. Lett. A 1992, 167, 309–313. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Klimov, A.B.; Nikonov, D.E. Quantum phenomena in resonators with moving walls. J. Math. Phys. 1993, 34, 2742–2756. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Mazzitelli, F.D. Renormalization-group approach to the dynamical Casimir effect. Phys. Rev. A 1998, 57, 2113–2119. [Google Scholar] [CrossRef] [Green Version]
- Dalvit, D.A.R.; Mazzitelli, F.D. Creation of photons in an oscillating cavity with two moving mirrors. Phys. Rev. A 1999, 59, 3049–3059. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, B.Z. Numerical solutions of the generalized Moore’s equations for a one-dimensional cavity with two moving mirrors. Phys. Lett. A 2002, 300, 27–32. [Google Scholar] [CrossRef]
- Crocce, M.; Dalvit, D.A.R.; Lombardo, F.C.; Mazzitelli, F.D. 2005 Hertz potentials approach to the dynamical Casimir effect in cylindrical cavities of arbitrary section. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S32–S39. [Google Scholar] [CrossRef] [Green Version]
- Dalvit, D.A.R.; Mazzitelli, F.D.; Millán, X.O. The dynamical Casimir effect for different geometries. J. Phys. A: Math. Gen. 2006, 39, 6261–70. [Google Scholar] [CrossRef]
- de la Llave, R.; Petrov, N.P. Theory of circle maps and the problem of one-dimensional optical resonator with a periodically moving wall. Phys. Rev. E 1999, 59, 6637–6651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, N.P.; de la Llave, R.; Vano, J.A. Torus maps and the problem of a one-dimensional optical resonator with a quasiperiodically moving wall. Phys. D 2003, 180, 140–184. [Google Scholar] [CrossRef]
- Petrov, N.P. The dynamical Casimir effect in a periodically changing domain: A dynamical systems approach. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S89–S99. [Google Scholar] [CrossRef]
- Wȩgrzyn, P. An optical approach to the dynamical Casimir effect. J. Phys. B: Atom. Mol. Opt. Phys. 2006, 39, 4895–4903. [Google Scholar] [CrossRef] [Green Version]
- Wȩgrzyn, P. Exact closed-form analytical solutions for vibrating cavities. J. Phys. B: Atom. Mol. Opt. Phys. 2007, 40, 2621–2640. [Google Scholar] [CrossRef]
- Fedotov, A.M.; Lozovik, Y.E.; Narozhny, N.B.; Petrosyan, A.N. 2006 Dynamical Casimir effect in a one-dimensional uniformly contracting cavity. Phys. Rev. A 2006, 74, 013806. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.T.; Granhen, E.R. A computer algebra package for calculation of the energy density produced via the dynamical Casimir effect in one-dimensional cavities. Comp. Phys. Commun. 2014, 185, 2101–2114. [Google Scholar] [CrossRef]
- Martin, I. Floquet dynamics of classical and quantum cavity fields. Ann. Phys. 2019, 405, 101–129. [Google Scholar] [CrossRef] [Green Version]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Univ. Press: Cambridge, UK, 1982. [Google Scholar]
- Beyer, H.; Nitsch, J. A note on a Casimir effect in a uniformly accelerated reference frame. Found. Phys. 1990, 20, 459–469. [Google Scholar] [CrossRef]
- Nagatani, Y.; Shigetomi, K. Effective theoretical approach to back reaction of the dynamical Casimir effect in 1+1 dimensions. Phys. Rev. A 2000, 62, 022117. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Klimov, A.B.; Man’ko, V.I. Generation of squeezed states in a resonator with a moving wall. Phys. Lett. A 1990, 149, 225–228. [Google Scholar] [CrossRef]
- Wu, Y.; Chan, K.W.; Chu, M.-C.; Leung, P.T. Radiation modes of a cavity with a resonantly oscillating boundary. Phys. Rev. A 1999, 59, 1662–1666. [Google Scholar] [CrossRef]
- Wȩgrzyn, P.; Róg, T. Vacuum energy of a cavity with a moving boundary. Acta Phys. Pol. B 2001, 32, 129–146. [Google Scholar]
- Wȩgrzyn, P. Parametric resonance in a vibrating cavity. Phys. Lett. A 2004, 322, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Wȩgrzyn, P.; Róg, T. Photons produced inside a cavity with a moving wall. Acta Phys. Pol. B 2003, 34, 3887–3900. [Google Scholar]
- Alves, D.T.; Granhen, E.R.; Lima, M.G.; Silva, H.O.; Rego, A.L.C. Time evolution of the energy density inside a one-dimensional non-static cavity with a vacuum, thermal and a coherent state. J. Phys. Conf. Ser. 2009, 161, 012032. [Google Scholar] [CrossRef]
- Alves, D.T.; Granhen, E.R.; Lima, M.G.; Rego, A.L.C. Quantum radiation force on a moving mirror for a thermal and a coherent field. J. Phys. Conf. Ser. 2009, 161, 012033. [Google Scholar] [CrossRef]
- Alves, D.T.; Granhen, E.R.; Silva, H.O.; Lima, M.G. Quantum radiation force on the moving mirror of a cavity, with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent state. Phys. Rev. D 2010, 81, 025016. [Google Scholar] [CrossRef]
- Alves, D.T.; Granhen, E.R.; Pires, W.P. Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors. Phys. Rev. D 2010, 82, 045028. [Google Scholar] [CrossRef] [Green Version]
- Grinberg, G.A. A method of approach to problems of the theory of heat conduction, diffusion and the wave theory and other similar problems in presence of moving boundaries and its applications to other problems.
- Razavy, M.; Terning, J. Quantum radiation in a one-dimensional cavity with moving boundaries. Phys. Rev. D 1985, 31, 307–313. [Google Scholar] [CrossRef]
- Calucci, G. Casimir effect for moving bodies. J. Phys. A: Math. Gen. 1992, 25, 3873–3882. [Google Scholar] [CrossRef]
- Law, C.K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A 1994, 49, 433–437. [Google Scholar] [CrossRef]
- Dodonov, V.V. Resonance photon generation in a vibrating cavity. J. Phys. A: Math. Gen. 1998, 31, 9835–9854. [Google Scholar] [CrossRef]
- Schützhold, R.; Plunien, G.; Soff, G. Trembling cavities in the canonical approach. Phys. Rev. A 1998, 57, 2311–2318. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.-Y.; Jung, H.-H.; Soh, K.-S. Interference phenomena in the photon production between two oscillating walls. Phys. Rev. A 1998, 57, 4952–4955. [Google Scholar] [CrossRef] [Green Version]
- Law, C.K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A 1995, 51, 2537–2541. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Pergamon: Oxford, UK, 1969. [Google Scholar]
- Lambrecht, A.; Jaekel, M.T.; Reynaud, S. Motion induced radiation from a vibrating cavity. Phys. Rev. Lett. 1996, 77, 615–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodonov, V.V. Resonance excitation and cooling of electromagnetic modes in a cavity with an oscillating wall. Phys. Lett. A 1996, 213, 219–225. [Google Scholar] [CrossRef]
- Wȩgrzyn, P. Quantum energy in a vibrating cavity. Mod. Phys. Lett. A 2004, 19, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Klimov, A.B. Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys. Rev. A 1996, 53, 2664–2682. [Google Scholar] [CrossRef] [PubMed]
- Law, C.K. Resonance response of the quantum vacuum to an oscillating boundary. Phys. Rev. Lett. 1994, 73, 1931–1934. [Google Scholar] [CrossRef]
- Cole, C.K.; Schieve, W.C. Radiation modes of a cavity with a moving boundary. Phys. Rev. A 1995, 52, 4405–4415. [Google Scholar] [CrossRef]
- Méplan, O.; Gignoux, C. Exponential growth of the energy of a wave in a 1D vibrating cavity: Application to the quantum vacuum. Phys. Rev. Lett. 1996, 76, 408–410. [Google Scholar] [CrossRef]
- Klimov, A.B.; Altuzar, V. Spectrum of photons generated in a one-dimensional cavity with oscillating boundary. Phys. Lett. A 1997, 226, 41–45. [Google Scholar] [CrossRef]
- Cooper, J. Long time behavior and energy growth for electromagnetic waves reflected by a moving boundary. IEEE Trans. Antennas Prop. 1993, 41, 1365–1370. [Google Scholar] [CrossRef]
- Dittrich, J.; Duclos, P.; Šeba, P. nstability in a classical periodically driven string. Phys. Rev. E 1994, 49, 3535–3538. [Google Scholar] [CrossRef]
- Dittrich, J.; Duclos, P.; Gonzalez, N. Stability and instability of the wave equation solutions in a pulsating domain. Rev. Math. Phys. 1998, 10, 925–962. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, W.D. Parametric instability in a taut string with a periodically moving boundary. ASME J. Appl. Mech. 2014, 81, 061002. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Andreata, M.A. Squeezing and photon distribution in a vibrating cavity. J. Phys. A: Math. Gen. 1999, 32, 6711–6726. [Google Scholar] [CrossRef] [Green Version]
- Andreata, M.A.; Dodonov, V.V. Energy density and packet formation in a vibrating cavity. J. Phys. A: Math. Gen. 2000, 33, 3209–3223. [Google Scholar] [CrossRef]
- Lambrecht, A.; Jaekel, M.-T.; Reynaud, S. Generating photon pulses with an oscillating cavity. Europhys. Lett. 1998, 43, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, A.; Jaekel, M.-T.; Reynaud, S. Frequency up-converted radiation from a cavity moving in vacuum. Eur. Phys. J. D 1998, 3, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, A. Electromagnetic pulses from an oscillating high-finesse cavity: Possible signatures for dynamic Casimir effect experiments. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S3–S10. [Google Scholar] [CrossRef]
- Rosanov, N.N.; Fedorov, E.G.; Matskovsky, A.A. Parametric generation of radiation in a dynamic cavity with frequency dispersion. Quantum Electron. 2016, 46, 13–15. [Google Scholar] [CrossRef]
- Rosanov, N.N.; Fedorov, E.G. Influence of frequency detunings and form of the initial field distribution on parametric generation of radiation in a dynamic cavity. Opt. Spectrosc. 2016, 120, 803–807. [Google Scholar] [CrossRef]
- Fedorov, E.G.; Rosanov, N.N.; Malomed, B.A. The evolution of field distribution in a dynamic cavity. Opt. Spectrosc. 2017, 123, 454–462. [Google Scholar] [CrossRef]
- Ruser, M. Vibrating cavities: A numerical approach. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S100–S115. [Google Scholar] [CrossRef] [Green Version]
- Ruser, M. Numerical approach to the dynamical Casimir effect. J. Phys. A: Math. Gen. 2006, 39, 6711–6723. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.T.; Granhen, E.R.; Silva, H.O.; Lima, M.G. Exact behavior of the energy density inside a one-dimensional oscillating cavity with a thermal state. Phys. Lett. A 2010, 374, 3899–3907. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.-Y.; Jung, H.-H.; Park, J.-W.; Soh, K.-S. Production of photons by the parametric resonance in the dynamical Casimir effect. Phys. Rev. A 1997, 56, 4440–4444. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.-Y.; Soh, K.-S.; Cai, R.-G.; Kim, S.P. Electromagnetic fields in a three-dimensional cavity and in a waveguide with oscillating walls. J. Phys. A: Math. Gen. 1998, 31, L457–L462. [Google Scholar] [CrossRef] [Green Version]
- Villar, P.I.; Soba, A.; Lombardo, F.C. Numerical approach to simulating interference phenomena in a cavity with two oscillating mirrors. Phys. Rev. A 2017, 95, 032115. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.T.; Farina, C.; Granhen, E.R. Dynamical Casimir effect in a resonant cavity with mixed boundary conditions. Phys. Rev. A 2006, 73, 063818. [Google Scholar] [CrossRef]
- Alves, D.T.; Granhen, E.R. Energy density and particle creation inside an oscillating cavity with mixed boundary conditions. Phys. Rev. A 2008, 77, 015808. [Google Scholar] [CrossRef]
- Ordaz-Mendoza, B.E.; Yelin, S.F. Resonant frequency ratios for the dynamical Casimir effect. Phys. Rev. A 2019, 100, 033815. [Google Scholar] [CrossRef]
- Barton, G.; Calogeracos, A. On the quantum electrodynamics of a dispersive mirror. I. Mass shifts, radiation, and radiative reaction. Ann. Phys. 1995, 238, 227–267. [Google Scholar] [CrossRef]
- Calogeracos, A.; Barton, G. On the quantum electrodynamics of a dispersive mirror. II. The boundary condition and the applied force via Diracs theory of constraints. Ann. Phys. 1995, 238, 268–285. [Google Scholar] [CrossRef]
- Oku, K.; Tsuchida, Y. Back-reaction in the moving mirror effects. Prog. Theor. Phys. 1979, 62, 1756–1767. [Google Scholar] [CrossRef] [Green Version]
- Colanero, K.; Chu, M.C. Energy focusing inside a dynamical cavity. Phys. Rev. E 2000, 62, 8663–8667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, C.K.; Schieve, W.C. Resonant energy exchange between a moving boundary and radiation modes of a cavity. Phys. Rev. A 2001, 64, 023813. [Google Scholar] [CrossRef]
- Saito, H.; Hyuga, H. Dynamical Casimir effect without boundary conditions. Phys. Rev. A 2002, 65, 053804. [Google Scholar] [CrossRef] [Green Version]
- Sinyukov, Y.M. Radiation processes in quantum systems with boundary. J. Phys. A: Math. Gen. 1982, 15, 2533–2545. [Google Scholar] [CrossRef]
- Helfer, A.D. Moving mirrors and thermodynamic paradoxes. Phys. Rev. D 2001, 63, 025016. [Google Scholar] [CrossRef] [Green Version]
- Butera, S.; Passante, R. Field fluctuations in a one-dimensional cavity with a mobile wall. Phys. Rev. Lett. 2013, 111, 060403. [Google Scholar] [CrossRef] [Green Version]
- Armata, F.; Passante, R. Vacuum energy densities of a field in a cavity with a mobile boundary. Phys. Rev. D 2015, 91, 025012. [Google Scholar] [CrossRef] [Green Version]
- Armata, F.; Kim, M.S.; Butera, S.; Rizzuto, L.; Passante, R. Nonequilibrium dressing in a cavity with a movable reflecting mirror. Phys. Rev. D 2017, 96, 045007. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Ponderomotive control of quantum macroscopic coherence. Phys. Rev. A 1997, 55, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Giovannetti, V.; Vitali, D.; Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 2002, 88, 120401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitali, D.; Gigan, S.; Ferreira, A.; Böhm, H.R.; Tombesi, P.; Guerreiro, A.; Vedral, V.; Zeilinger, A.; Aspelmeyer, M. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 2007, 98, 030405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Mahajan, S.; Aggarwal, N.; Kumar, T.; Bhattacherjee, A.B.; Mohan, M. Dynamics of an optomechanical resonator containing a quantum well induced by periodic modulation of cavity field and external laser beam. Can. J. Phys. 2015, 93, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Macrì, V.; Ridolfo, A.; Di Stefano, O.; Kockum, A.F.; Nori, F.; Savasta, S. Nonperturbative dynamical Casimir effect in optomechanical systems: Vacuum Casimir–Rabi splittings. Phys. Rev. X 2018, 8, 011031. [Google Scholar] [CrossRef] [Green Version]
- Jansen, E.; Machado, J.D.P.; Blanter, Y.M. Realization of a degenerate parametric oscillator in electromechanical systems. Phys. Rev. B 2019, 99, 045401. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, O.; Settineri, A.; Macrì, V.; Ridolfo, A.; Stassi, R.; Kockum, A.F.; Savasta, S.; Nori, F. Interaction of mechanical oscillators mediated by the exchange of virtual photon pairs. Phys. Rev. Lett. 2019, 122, 030402. [Google Scholar] [CrossRef] [Green Version]
- Butera, S.; Carusotto, I. Mechanical backreaction effect of the Casimir emission. Phys. Rev. A 2019, 99, 053815. [Google Scholar] [CrossRef] [Green Version]
- Settineri, A.; Macrì, V.; Garziano, L.; Di Stefano, O.; Nori, F.; Savasta, S. Conversion of mechanical noise into correlated photon pairs: Dynamical Casimir effect from an incoherent mechanical drive. Phys. Rev. A 2019, 100, 022501. [Google Scholar] [CrossRef] [Green Version]
- Del Grosso, N.F.; Lombardo, F.C.; Villar, P.I. Photon generation via the dynamical Casimir effect in an optomechanical cavity as a closed quantum system. Phys. Rev. A 2019, 100, 062516. [Google Scholar] [CrossRef] [Green Version]
- Jaekel, M.T.; Reynaud, S. Fluctuations and dissipation for a mirror in vacuum. Quant. Opt. 1992, 4, 39–53. [Google Scholar] [CrossRef]
- Nicolaevici, N. Quantum radiation from a partially reflecting moving mirror. Class. Quant. Grav. 2001, 18, 619–628. [Google Scholar] [CrossRef]
- Obadia, N.; Parentani, R. Notes on moving mirrors. Phys. Rev. D 2001, 64, 044019. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Elizalde, E. Physically sound Hamiltonian formulation of the dynamical Casimir effect. Phys. Rev. D 2007, 76, 065001. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Elizalde, E. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Phys. Rev. D 2008, 77, 045011. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E. 2008 Dynamical Casimir effect with semi-transparent mirrors, and cosmology. J. Phys. A: Math. Theor. 2008, 41, 164061. [Google Scholar] [CrossRef] [Green Version]
- Nicolaevici, N. Semitransparency effects in the moving mirror model for Hawking radiation. Phys. Rev. D 2009, 80, 125003. [Google Scholar] [CrossRef]
- Sarabadani, J.; Miri, M.F. Motion-induced radiation in a cavity with conducting and permeable plates. Phys. Rev. A 2007, 75, 055802. [Google Scholar] [CrossRef]
- Mintz, B.; Farina, C.; Maia Neto, P.A.; Rodrigues, R.B. Casimir forces for moving boundaries with Robin conditions. J. Phys. A: Math. Gen. 2006, 39, 6559–6565. [Google Scholar] [CrossRef]
- Mintz, B.; Farina, C.; Maia Neto, P.A.; Rodrigues, R.B. Particle creation by a moving boundary with a Robin boundary condition. J. Phys. A: Math. Gen. 2006, 39, 11325–11333. [Google Scholar] [CrossRef]
- Silva, H.O.; Farina, C. Simple model for the dynamical Casimir effect for a static mirror with time-dependent properties. Phys. Rev. D 2011, 84, 045003. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Vacuum fluctuations and generalized boundary conditions. Phys. Rev. D 2013, 87, 105008. [Google Scholar] [CrossRef] [Green Version]
- Crocce, M.; Dalvit, D.A.R.; Lombardo, F.C.; Mazzitelli, F.D. Model for resonant photon creation in a cavity with time-dependent conductivity. Phys. Rev. A 2004, 70, 033811. [Google Scholar] [CrossRef] [Green Version]
- Naylor, W.; Matsuki, S.; Nishimura, T.; Kido, Y. Dynamical Casimir effect for TE and TM modes in a resonant cavity bisected by a plasma sheet. Phys. Rev. A 2009, 80, 043835. [Google Scholar] [CrossRef] [Green Version]
- Kulagin, V.V.; Cherepenin, V.A. Generation of squeezed states on reflection of light from a system of free electrons. JETP Lett. 1996, 63, 170–175. [Google Scholar] [CrossRef]
- Kulagin, V.V.; Cherepenin, V.A.; Hur, M.S.; Suk, H. Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: Dynamics of electrons in a linearly polarized external field. Phys. Plasmas 2007, 14, 113101. [Google Scholar] [CrossRef] [Green Version]
- Bulanov, S.V.; Esirkepov, T.Zh.; Kando, M.; Pirozhkov, A.S.; Rosanov, N.N. Relativistic mirrors in plasmas. Novel results and perspectives. Phys. Uspekhi 2013, 56, 429–464. [Google Scholar] [CrossRef]
- Silva, J.D.L.; Braga, A.N.; Alves, D.T. Dynamical Casimir effect with δ − δ′ mirrors. Phys. Rev. D 2016, 94, 105009. [Google Scholar] [CrossRef] [Green Version]
- Lima Silva, J.D.; Braga, A.N.; Rego, A.L.C.; Alves, D.T. Interference phenomena in the dynamical Casimir effect for a single mirror with Robin conditions. Phys. Rev. D 2015, 92, 025040. [Google Scholar] [CrossRef]
- Brown, E.G.; Louko, J. Smooth and sharp creation of a Dirichlet wall in 1+1 quantum field theory: How singular is the sharp creation limit? JHEP 2015, 8, 061. [Google Scholar] [CrossRef] [Green Version]
- Harada, T.; Kinoshita, S.; Miyamoto, U. Vacuum excitation by sudden appearance and disappearance of a Dirichlet wall in a cavity. Phys. Rev. D 2016, 94, 025006. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, U. Explosive particle creation by instantaneous change of boundary conditions. Phys. Rev. D 2019, 99, 025012. [Google Scholar] [CrossRef] [Green Version]
- Sassaroli, E.; Srivastava, Y.N.; Widom, A. Photon production by the Dynamical casimir effect. Phys. Rev. A 1994, 50, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Galley, C.R.; Behunin, R.O.; Hu, B.L. Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A 2013, 87, 043832. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Unruh, W.G. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D 2014, 89, 085009. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G.E.; Zubkov, M.A. Mirror as polaron with internal degrees of freedom. Phys. Rev. D 2014, 90, 087702. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Unruh, W.G. Mirror moving in quantum vacuum of a massive scalar field. Phys. Rev. D 2015, 92, 063520. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-Y. Unruh-DeWitt detectors as mirrors: Dynamical reflectivity and Casimir effect. Phys. Rev. D 2018, 98, 105010. [Google Scholar] [CrossRef] [Green Version]
- Candelas, P.; Deutsch, D. On the vacuum stress induced by uniform acceleration or supporting the ether. Proc. R. Soc. Lond. A 1977, 354, 79–99. [Google Scholar] [CrossRef]
- Frolov, V.P.; Serebriany, E.M. Quantum effects in systems with accelerated mirrors. J. Phys. A: Math. Gen. 1979, 12, 2415–2428. [Google Scholar] [CrossRef]
- Frolov, V.P.; Serebriany, E.M. Quantum effects in systems with accelerated mirrors: II. electromagnetic field. J. Phys. A: Math. Gen. 1980, 13, 3205–3211. [Google Scholar] [CrossRef]
- Anderson, W.G.; Israel, W. Quantum flux from a moving spherical mirror. Phys. Rev. D 1999, 60, 084003. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.; Singh, D. Quantum radiation of uniformly accelerated spherical mirrors. Class. Quantum Grav. 2001, 18, 3025–3038. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. 2007 Quantum dissipative effects in moving mirrors: A functional approach. Phys. Rev. D 2007, 76, 085007. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.H.; Vilenkin, A. Quantum radiation by moving mirrors. Phys. Rev. D 1982, 25, 2569–2575. [Google Scholar] [CrossRef]
- Maia Neto, P.A. Vacuum radiation pressure on moving mirrors. J. Phys. A: Math. Gen. 1994, 27, 2167–2180. [Google Scholar] [CrossRef]
- Maia Neto, P.A.; Machado, L.A.S. Radiation reaction force for a mirror in vacuum. Braz. J. Phys. 1995, 25, 324–334. [Google Scholar]
- Maia Neto, P.A.; Machado, L.A.S. Quantum radiation generated by a moving mirror in free space. Phys. Rev. A 1996, 54, 3420–3427. [Google Scholar] [CrossRef]
- Mendonça, J.P.F.; Maia Neto, P.A.; Takakura, F.I. Quantum photon emission from a moving mirror in the nonperturbative regime. Opt. Commun. 1999, 160, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Miri, F.; Golestanian, R. Motion-induced radiation from a dynamically deforming mirror. Phys. Rev. A 1999, 59, 2291–2294. [Google Scholar] [CrossRef] [Green Version]
- Montazeri, M.; Miri, M.F. Motion-induced radiation from a dynamically deforming mirror: Neumann boundary condition. Phys. Rev. A 2005, 71, 063814. [Google Scholar] [CrossRef]
- Sarabadani, J.; Miri, M.F. Mechanical response of the quantum vacuum to dynamic deformations of a cavity. Phys. Rev. A 2006, 74, 023801. [Google Scholar] [CrossRef]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D.; Remaggi, M.L. Quantum dissipative effects in graphenelike mirrors. Phys. Rev. D 2013, 88, 105004. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Mazzitelli, F.D. Radiation from a moving planar dipole layer: Patch potentials versus dynamical Casimir effect. Phys. Rev. A 2014, 89, 062513. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C. Oscillating dipole layer facing a conducting plane: A classical analogue of the dynamical Casimir effect. Eur. Phys. J. C 2015, 75, 598. [Google Scholar] [CrossRef] [Green Version]
- Stargen, D.J.; Kothawala, D.; Sriramkumar, L. Moving mirrors and the fluctuation-dissipation theorem. Phys. Rev. D 2016, 94, 025040. [Google Scholar] [CrossRef] [Green Version]
- Arkhipov, M.V.; Babushkin, I.; Pul’kin, N.S.; Arkhipov, R.M.; Rosanov, N.N. On the emission of radiation by an isolated vibrating metallic mirror. Opt. Spectrosc. 2017, 122, 670–674. [Google Scholar] [CrossRef]
- Fosco, C.D.; Remaggi, M.L.; Rodríguez, M.C. Vacuum fluctuation effects due to an Abelian gauge field in 2+1 dimensions, in the presence of moving mirrors. Phys. Lett. B 2019, 797, 134838. [Google Scholar] [CrossRef]
- Barton, G.; Eberlein, C. On quantum radiation from a moving body with finite refractive index. Ann. Phys. 1993, 227, 222–274. [Google Scholar] [CrossRef]
- Salamone, G.M. Virtual-photon-cloud creation and emission of radiation from a dielectric slab in arbitrary motion. Phys. Rev. A 1994, 49, 2280–2289. [Google Scholar] [CrossRef] [PubMed]
- Salamone, G.M.; Barton, G. Quantum radiative reaction on a dispersive mirror in one dimension. Phys. Rev. A 1995, 51, 3506–3512. [Google Scholar] [CrossRef] [PubMed]
- Barton, G. The quantum radiation from mirrors moving sideways. Ann. Phys. 1996, 245, 361–388. [Google Scholar] [CrossRef] [Green Version]
- Barton, G.; North, C.A. Peculiarities of quantum radiation in three dimensions from moving mirrors with high refractive index. Ann. Phys. 1996, 252, 72–114. [Google Scholar] [CrossRef]
- Gütig, R.; Eberlein, C. Quantum radiation from moving dielectrics in two, three, and more spatial dimensions. J. Phys. A: Math. Gen. 1998, 31, 6819–6838. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.; Singh, D. Quantum effects in the presence of expanding semi-transparent spherical mirrors. Class. Quant. Grav. 1999, 16, 3693–3716. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.; Singh, D. Quantum radiation of a uniformly accelerated refractive body. Class. Quantum Grav. 2000, 17, 3905–3916. [Google Scholar] [CrossRef] [Green Version]
- Braginsky, V.B.; Khalili, F.Y. Friction and fluctuations produced by the quantum ground state. Phys. Lett. A 1991, 161, 197–201. [Google Scholar] [CrossRef]
- Jaekel, M.T.; Reynaud, S. Motional Casimir force. J. Phys. I (France) 1992, 2, 149–165. [Google Scholar] [CrossRef]
- Jaekel, M.T.; Reynaud, S. Causality, stability and passivity for a mirror in vacuum. Phys. Lett. A 1992, 167, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Jaekel, M.T.; Reynaud, S. Friction and inertia for a mirror in a thermal field. Phys. Lett. A 1993, 172, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Jaekel, M.T.; Reynaud, S. Inertia of Casimir energy. J. Phys. I (France) 1993, 3, 1093–1104. [Google Scholar] [CrossRef] [Green Version]
- Eberlein, C. Radiation-reaction force on a moving mirror. J. Phys. I (France) 1993, 3, 2151–2159. [Google Scholar] [CrossRef]
- Maia Neto, P.A.; Reynaud, S. Dissipative force on a sphere moving in vacuum. Phys. Rev. A 1993, 47, 1639–1646. [Google Scholar] [CrossRef]
- Alves, D.T.; Farina, C.; Maia Neto, P.A. Dynamical Casimir effect with Dirichlet and Neumann boundary conditions. J. Phys. A: Math. Gen. 2003, 36, 11333–11342. [Google Scholar] [CrossRef]
- Alves, D.T.; Granhen, E.R.; Lima, M.G. Quantum radiation force on a moving mirror with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent state. Phys. Rev. D 2008, 77, 125001. [Google Scholar] [CrossRef] [Green Version]
- Teodorovich, E.V. On the contribution of macroscopic van Der Waals interactions to frictional force. Proc. R. Soc. Lond. A 1978, 362, 71–77. [Google Scholar] [CrossRef]
- Levitov, L.S. Van der Waals friction. Europhys. Lett. 1989, 8, 499–504. [Google Scholar] [CrossRef]
- Polevoǐ, V.G. Tangential molecular forces caused between moving bodies by a fluctuating electromagnetic field. JETP 1990, 71, 1119–1124. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/71/6/p1119?a=list.
- Mkrtchian, V.E. Interaction between moving macroscopic bodies: viscosity of the electromagnetic vacuum. Phys. Lett. A 1995, 207, 299–302. [Google Scholar] [CrossRef]
- Golestanian, R.; Kardar, M. Mechanical response of vacuum. Phys. Rev. Lett. 1997, 78, 3421–3425. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B. Shearing the vacuum—quantum friction. J. Phys. Condens. Matter 1997, 9, 10301–10320. [Google Scholar] [CrossRef]
- Golestanian, R.; Kardar, M. Path integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A 1998, 58, 1713–1722. [Google Scholar] [CrossRef] [Green Version]
- Volokitin, A.I.; Persson, B.N.J. Theory of friction: The contribution from a fluctuating electromagnetic field. J. Phys. Condens. Matter 1999, 11, 345–359. [Google Scholar] [CrossRef]
- Kardar, M.; Golestanian, R. The “friction” of vacuum and other fluctuation-induced forces. Rev. Mod. Phys. 1999, 71, 1233–1245. [Google Scholar] [CrossRef] [Green Version]
- Kenneth, O.; Nussinov, S. Small object limit of the Casimir effect and the sign of the Casimir force. Phys. Rev. D 2002, 65, 085014. [Google Scholar] [CrossRef] [Green Version]
- Volokitin, A.I.; Persson, B.N.J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 2007, 79, 1291–1329. [Google Scholar] [CrossRef]
- Schaich, W.L.; Harris, J. Dynamic corrections to Van der Waals potentials. J. Phys. F Met. Phys. 1981, 11, 65–78. [Google Scholar] [CrossRef]
- Philbin, T.G.; Leonhardt, U. No quantum friction between uniformly moving plates. New J. Phys. 2009, 11, 033035. [Google Scholar] [CrossRef]
- Pendry, J.B. Quantum friction–fact or fiction? New J. Phys. 2010, 12, 033028. [Google Scholar] [CrossRef]
- Leonhardt, U. Comment on ‘Quantum Friction–Fact or Fiction?’. New J. Phys. 2010, 12, 068001. [Google Scholar] [CrossRef]
- Pendry, J.B. Reply to comment on ‘Quantum friction-fact or fiction?’. New J. Phys. 2010, 12, 068002. [Google Scholar] [CrossRef]
- Volokitin, A.I.; Persson, B.N.J. Comment on ‘No quantum friction between uniformly moving plates’. New J. Phys. 2011, 13, 068001. [Google Scholar] [CrossRef]
- Philbin, T.G.; Leonhardt, U. Reply to comment on ‘No quantum friction between uniformly moving plates’. New J. Phys. 2011, 13, 068002. [Google Scholar] [CrossRef]
- Dedkov, G.V.; Kyasov, A.A. Conservative-dissipative forces and heating mediated by fluctuation electromagnetic field: Two plates in relative nonrelativistic motion. Surf. Sci. 2010, 604, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Quantum dissipative effects in moving imperfect mirrors: Sidewise and normal motions. Phys. Rev. D 2011, 84, 025011. [Google Scholar] [CrossRef] [Green Version]
- Despoja, V.; Echenique, P.M.; Šunjić, M. Nonlocal microscopic theory of quantum friction between parallel metallic slabs. Phys. Rev. B 2011, 83, 205424. [Google Scholar] [CrossRef] [Green Version]
- Horsley, S.A.R. Canonical quantization of the electromagnetic field interacting with a moving dielectric medium. Phys. Rev. A 2012, 86, 023830. [Google Scholar] [CrossRef] [Green Version]
- Maslovski, S.I.; Silveirinha, M.G. Quantum friction on monoatomic layers and its classical analog. Phys. Rev. B 2013, 88, 035427. [Google Scholar] [CrossRef]
- Mkrtchian, V.E.; Henkel, C. On non-equilibrium photon distributions in the Casimir effect. Ann. Phys. 2014, 526, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Høye, J.S.; Brevik, I. Casimir friction at zero and finite temperatures. Eur. Phys. J. D 2014, 68, 61. [Google Scholar] [CrossRef] [Green Version]
- Silveirinha, M.G. Theory of quantum friction. New J. Phys. 2014, 16, 063011. [Google Scholar] [CrossRef] [Green Version]
- Volokitin, A.I.; Persson, B.N.J. Quantum Vavilov-Cherenkov radiation from shearing two transparent dielectric plates. Phys. Rev. B 2016, 93, 035407. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A.; Høye, J.S.; Brevik, I. The reality of Casimir friction. Symmetry 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Farías, M.B.; Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Quantum friction between graphene sheets. Phys. Rev. D 2017, 95, 065012. [Google Scholar] [CrossRef] [Green Version]
- Dedkov, G.V.; Kyasov, A.A. Friction Force and Radiative Heat Exchange in a System of Two Parallel Plates in Relative Motion: Corollaries of the Levine–Polevoi–Rytov Theory. Phys. Solid State 2018, 60, 2349–2357. [Google Scholar] [CrossRef]
- Despoja, V.; Echenique, P.M.; Šunjić, M. Quantum friction between oscillating crystal slabs: Graphene monolayers on dielectric substrates. Phys. Rev. B 2018, 98, 125405. [Google Scholar] [CrossRef] [Green Version]
- Butera, S.; Carusotto, I. Quantum fluctuations of the friction force induced by the dynamical Casimir emission. EPL 2019, 128, 24002. [Google Scholar] [CrossRef]
- Farías, M.B.; Lombardo, F.C.; Soba, A.; Villar, P.I.; Decca, R.S. Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase. arXiv 2019, arXiv:1912.05513. [Google Scholar] [CrossRef]
- Zel’dovich, Ya.B. Generation of waves by a rotating body. JETP Lett. 1971, 14, 180–181, Reprinted in Selected Works of Yakov Borisovich Zeldovich. Volume 2: Particles, Nuclei, and the Universe; Ostriker, J.P., Barenblatt, G.I., Sunyaev, R.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1993; pp. 251–254. Available online: http://www.jetpletters.ac.ru/ps/1604/article_24607.shtml.
- Zel’dovich, Ya.B. Amplification of cylindrical electromagnetic waves reflected from a rotating body. JETP 1972, 35, 1085–1087. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/35/6/p1085?a=list.
- Starobinskiǐ, A.A. Amplification of waves during reflection from a rotating “black hole”. JETP 1973, 37, 28–32. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/37/1/p28?a=list.
- Press, W.H.; Teukolsky, S.A. Floating orbits, superradiant scattering and black-hole bomb. Nature 1972, 238, 211–212. [Google Scholar] [CrossRef]
- Unruh, W.G. Second quantization in the Kerr metric. Phys. Rev. D 1974, 10, 3194–3205. [Google Scholar] [CrossRef]
- Bekenstein, J.D.; Schiffer, M. The many faces of superradiance. Phys. Rev. D 1998, 58, 064014. [Google Scholar] [CrossRef] [Green Version]
- Manjavacas, A.; García de Abajo, F.J. Thermal and vacuum friction acting on rotating particles. Phys. Rev. A 2010, 82, 063827. [Google Scholar] [CrossRef] [Green Version]
- Maghrebi, M.F.; Jaffe, R.L.; Kardar, M. Spontaneous Emission by Rotating Objects: A Scattering Approach. Phys. Rev. Lett. 2012, 108, 230403. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Manjavacas, A.; García de Abajo, F.J.; Pendry, J.B. Rotational quantum friction. Phys. Rev. Lett. 2012, 109, 123604. [Google Scholar] [CrossRef] [Green Version]
- Maghrebi, M.F.; Jaffe, R.L.; Kardar, M. Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion. Phys. Rev. A 2014, 90, 012515. [Google Scholar] [CrossRef] [Green Version]
- Calogeracos, A.; Volovik, G.E. Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum. JETP Lett. 1999, 69, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Lannebère, S.; Silveirinha, M.G. Wave instabilities and unidirectional light flow in a cavity with rotating walls. Phys. Rev. A 2016, 94, 033810. [Google Scholar] [CrossRef] [Green Version]
- Johnston, H.; Sarkar, S. A re-examination of the quantum theory of optical cavities with moving mirrors. J. Phys. A Math. Gen. 1996, 29, 1741–1746. [Google Scholar] [CrossRef]
- Chizhov, A.V.; Schrade, G.; Zubairy, M.S. Quantum statistics of vacuum in a cavity with a moving mirror. Phys. Lett. A 1997, 230, 269–275. [Google Scholar] [CrossRef]
- Mundarain, D.F.; Maia Neto, P.A. Quantum radiation in a plain cavity with moving mirrors. Phys. Rev. A 1998, 57, 1379–1390. [Google Scholar] [CrossRef] [Green Version]
- Uhlmann, M.; Plunien, G.; Schützhold, R.; Soff, G. Resonant cavity photon creation via the dynamical Casimir effect. Phys. Rev. Lett. 2004, 93, 193601. [Google Scholar] [CrossRef] [Green Version]
- Levchenko, A.V.; Trifanov, A.I. Regimes of photon generation in Dynamical Casimir Effect under various resonance conditions. J. Phys. Conf. Ser. 2015, 643, 012093. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Dodonov, V.V. Resonance generation of photons from vacuum in cavities due to strong periodical changes of conductivity in a thin semiconductor boundary layer. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S47–S58. [Google Scholar] [CrossRef]
- Wu, Y.; Chu, M.-C.; Leung, P.T. Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency. Phys. Rev. A 1999, 59, 3032–3037. [Google Scholar] [CrossRef]
- Yang, X.-X.; Wu, Y. Dynamics of the quantized radiation field in an oscillating cavity in the harmonic resonance case. J. Phys. A: Math. Gen. 1999, 32, 7375–7392. [Google Scholar] [CrossRef]
- Husimi, K. Miscellanea in elementary quantum mechanics. II. Prog. Theor. Phys. 1953, 9, 381–402. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Invariants and the Evolution of Nonstationary Quantum Systems (Proceedings of the Lebedev Physics Institute vol 183); Nova Science: Commack, NY, USA, 1989. [Google Scholar]
- Dodonov, V.V.; Man’ko, O.V.; Man’ko, V.I. Quantum nonstationary oscillator: Models and applications. J. Russ. Laser Res. 1995, 16, 1–56. [Google Scholar] [CrossRef]
- Dodonov, V.V. Parametric excitation and generation of nonclassical states in linear media. In Theory of Nonclassical States of Light; Dodonov, V.V., Man’ko, V.I., Eds.; Taylor & Francis: London, UK, 2003; pp. 153–218. [Google Scholar]
- Dodonov, V.V.; Klimov, A.B.; Nikonov, D.E. Quantum phenomena in nonstationary media. Phys. Rev. A 1993, 47, 4422–4429. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, A.V.; Dodonov, V.V. Dynamical Casimir effect in a cavity with a weakly non-equidistant spectrum. Phys. Lett. A 2012, 376, 1903–1906. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Dodonov, E.V.; Dodonov, V.V. Photon generation from vacuum in nondegenerate cavities with regular and random periodic displacements of boundaries. Phys. Lett. A 2003, 317, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Suzuki, T. Rotating wave approximation of the Law’s effective hamiltonian on the dynamical Casimir effect. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450003. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Lowenstein, A.; Mathur, H. Effect of forcing on vacuum radiation. Phys. Rev. A 2019, 99, 022504. [Google Scholar] [CrossRef] [Green Version]
- Crocce, M.; Dalvit, D.A.R.; Mazzitelli, F.D. Resonant photon creation in a three-dimensional oscillating cavity. Phys. Rev. A 2001, 64, 013808. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Nonstationary Casimir effect in cavities with two resonantly coupled modes . Phys. Lett. A 2001, 289, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Ruser, M. Numerical investigation of photon creation in a three-dimensional resonantly vibrating cavity: Transverse electric modes. Phys. Rev. A 2006, 73, 043811. [Google Scholar] [CrossRef] [Green Version]
- Yuce, C.; Ozcakmakli, Z. The dynamical Casimir effect for two oscillating mirrors in 3D. J. Phys. A: Math. Theor. 2008, 41, 265401. [Google Scholar] [CrossRef]
- Yuce, C.; Ozcakmakli, Z. Dynamical Casimir effect for a swinging cavity. J. Phys. A: Math. Theor. 2009, 42, 035403. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Dodonov, A.V. Excitation of the classical electromagnetic field in a cavity containing a thin slab with a time-dependent conductivity. J. Russ. Laser Res. 2016, 37, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 1948, 51, 793–795. [Google Scholar]
- Bordag, M.; Petrov, G.; Robaschik, D. Calculation of the Casimir effect for scalar fields with the simplest nonstationary boundary conditions. Sov. J. Nucl. Phys. 1984, 39, 828–831. [Google Scholar]
- Bordag, M.; Dittes, F.-M.; Robaschik, D. The Casimir effect with uniformly moving mirrors. Sov. J. Nucl. Phys. 1986, 43, 1034–1038. [Google Scholar]
- Hanke, A. non-equilibrium casimir force between vibrating plates. PLoS ONE 2013, 8, e53228. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, C.; Hacyan, S.; Jáuregui, R. Generation of particles and squeezed states between moving conductors. Phys. Rev. A 1995, 52, 594–601. [Google Scholar] [CrossRef]
- Cirone, M.A.; Rza̧źewski, K. Electromagnetic radiation in a cavity with a time-dependent mirror. Phys. Rev. A 1999, 60, 886–892. [Google Scholar] [CrossRef]
- Setare, M.R.; Seyedzahedi, A. Fermion particle production in dynamical Casimir effect in a three-dimensional box. Int. J. Mod. Phys. A 2012, 27, 1250176. [Google Scholar] [CrossRef] [Green Version]
- Mkrtchian, V.E.; von Baltz, R. Dynamical electromagnetic modes for an expanding sphere. J. Math. Phys. 2000, 41, 1956–1960. [Google Scholar] [CrossRef]
- Mazzitelli, F.D.; Millán, X.O. Photon creation in a spherical oscillating cavity. Phys. Rev. A 2006, 73, 063829. [Google Scholar] [CrossRef] [Green Version]
- Pascoal, F.; Céleri, L.C.; Mizrahi, S.S.; Moussa, M.H.Y. Dynamical Casimir effect for a massless scalar field between two concentric spherical shells. Phys. Rev. A 2008, 78, 032521. [Google Scholar] [CrossRef] [Green Version]
- Pascoal, F.; Céleri, L.C.; Mizrahi, S.S.; Moussa, M.H.Y.; Farina, C. Dynamical Casimir effect for a massless scalar field between two concentric spherical shells with mixed boundary conditions. Phys. Rev. A 2009, 80, 012503. [Google Scholar] [CrossRef]
- Naylor, W. Towards particle creation in a microwave cylindrical cavity. Phys. Rev. A 2012, 86, 023842. [Google Scholar] [CrossRef] [Green Version]
- Setare, M. R; Seyedzahedi, A. Fermion particle production as a dynamical Casimir effect inside a three- dimensional sphere. J. Phys. Conf. Ser. 2013, 410, 012150. [Google Scholar] [CrossRef]
- Rego, A.L.C.; Mintz, B.W.; Farina, C.; Alves, D.T. Inhibition of the dynamical Casimir effect with Robin boundary conditions. Phys. Rev. D 2013, 87, 045024. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Giraldo, A.; Mazzitelli, F.D. Dynamical Casimir effect for semitransparent mirrors. Phys. Rev. D 2017, 96, 045004. [Google Scholar] [CrossRef] [Green Version]
- Maghrebi, M.F.; Golestanian, R.; Kardar, M. Scattering approach to the dynamical Casimir effect. Phys. Rev. D 2013, 87, 025016. [Google Scholar] [CrossRef] [Green Version]
- Villar, P.I.; Soba, A. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions. Phys. Rev. E 2017, 96, 013307. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, Y.N.; Widom, A.; Sivasubramanian, S.; Pradeep Ganesh, M. Dynamical Casimir effect instabilities. Phys. Rev. A 2006, 74, 032101. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, I.M.; Dodonov, A.V. Microscopic toy model for the cavity dynamical Casimir effect. J. Phys. A: Math. Theor. 2015, 48, 245302. [Google Scholar] [CrossRef]
- Román-Ancheyta, R.; González-Gutiérrez, C.; Récamier, J. Influence of the Kerr nonlinearity in a single nonstationary cavity mode. J. Opt. Soc. Am. B 2017, 34, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Paredes, A.; Récamier, J. Study of the combined effects of a Kerr nonlinearity and a two-level atom upon a single nonstationary cavity mode. J. Opt. Soc. Am. B 2019, 36, 1538–1543. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Brodin, G.; Marklund, M. The influence of temporal coherence on the dynamical Casimir effect. Phys. Lett. A 2011, 375, 2665–2669. [Google Scholar] [CrossRef] [Green Version]
- Rosanov, N.N.; Matskovskii, A.A.; Malevich, V.L.; Sinitsyn, G.V. Parametric field excitation in a cavity with oscillating mirrors. 2015, Opt. Spectrosc. 2015, 119, 89–91. [Google Scholar] [CrossRef]
- Srivastava, Y.; Widom, A. Quantum electrodynamic processes in electrical engineering circuits. Phys. Rep. 1987, 148, 1–65. [Google Scholar] [CrossRef]
- Man’ko, V.I. The Casimir effect and quantum vacuum generator. J. Russ. Laser Res. 1991, 12, 383–385. [Google Scholar] [CrossRef]
- Man’ko, O.V. Correlated squeezed states of a Josephson junction. J. Kor. Phys. Soc. 1994, 27, 1–4. [Google Scholar]
- Segev, E.; Abdo, B.; Shtempluck, O.; Buks, E.; Yurke, B. Prospects of employing superconducting stripline resonators for studying the dynamical Casimir effect experimentally. Phys. Lett. A 2007, 370, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Takashima, K.; Hatakenaka, N.; Kurihara, S.; Zeilinger, A. Squeezing of a quantum flux in a double rf-SQUID system. J. Phys. A: Math. Theor. 2008, 41, 164036. [Google Scholar] [CrossRef]
- Fujii, T.; Matsuo, S.; Hatakenaka, N.; Kurihara, S.; Zeilinger, A. Quantum circuit analog of the dynamical Casimir effect. Phys. Rev. B 2011, 84, 174521. [Google Scholar] [CrossRef] [Green Version]
- Berdiyorov, G.R.; Milošević, M.V.; Savel’ev, S.; Kusmartsev, F.; Peeters, F.M. Parametric amplification of vortex-antivortex pair generation in a Josephson junction. Phys. Rev. B 2014, 90, 134505. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V. Photon creation from vacuum and interactions engineering in nonstationary circuit QED. J. Phys. Conf. Ser. 2009, 161, 012029. [Google Scholar] [CrossRef]
- Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 2009, 103, 147003. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir effect in superconducting microwave circuits. Phys. Rev. A 2010, 82, 052509. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.M.; Duty, T.; Sandberg, M.; Persson, F.; Shumeiko, V.; Delsing, P. Photon generation in an electromagnetic cavity with a time-dependent boundary. Phys. Rev. Lett. 2010, 105, 233907. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J.R.; Duty, T.; Nori, F.; Delsing, P. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 2011, 479, 376–379. [Google Scholar] [CrossRef]
- Johansson, J.R.; Johansson, G.; Wilson, C.M.; Delsing, P.; Nori, F. Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 2013, 87, 043804. [Google Scholar] [CrossRef] [Green Version]
- Lähteenmäki, P.; Paraoanu, G.S.; Hassel, J.; Hakonen, P.J. Dynamical Casimir effect in a Josephson metamaterial. Proc. Nat. Acad. Sci. USA 2013, 110, 4234–8. [Google Scholar] [CrossRef] [Green Version]
- Svensson, I.-M.; Pierre, M.; Simoen, M.; Wustmann, W.; Krantz, P.; Bengtsson, A.; Johansson, G.; Bylander, J.; Shumeiko, V.; Delsing, P. Microwave photon generation in a doubly tunable superconducting resonator. J. Phys. Conf. Ser. 2018, 969, 012146. [Google Scholar] [CrossRef]
- Wustmann, W.; Shumeiko, V. Parametric resonance in tunable superconducting cavities. Phys. Rev. B 2013, 87, 184501. [Google Scholar] [CrossRef] [Green Version]
- Rego, A.L.C.; Alves, J.P.daS.; Alves, D.T.; Farina, C. Relativistic bands in the spectrum of created particles via the dynamical Casimir effect. Phys. Rev. A 2013, 88, 032515. [Google Scholar] [CrossRef] [Green Version]
- Rego, A.L.C.; Silva, H.O.; Alves, D.T.; Farina, C. New signatures of the dynamical Casimir effect in a superconducting circuit. Phys. Rev. D 2014, 90, 025003. [Google Scholar] [CrossRef] [Green Version]
- Lindkvist, J.; Sabin, C.; Fuentes, I.; Dragan, A.; Svensson, I.-M.; Delsing, P.; Johansson, G. Twin paradox with macroscopic clocks in superconducting circuits. Phys. Rev. A 2014, 90, 052113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.N.; Luo, X.W.; Zhou, Z.W. Dynamical Casimir effect in dissipative superconducting circuit system. Sci. China - Phys. Mech. Astron. 2014, 57, 2251–2258. [Google Scholar] [CrossRef]
- Andersen, C.K.; Mølmer, K. Multifrequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings. Phys. Rev. A 2015, 91, 023828. [Google Scholar] [CrossRef] [Green Version]
- Doukas, J.; Louko, J. Superconducting circuit boundary conditions beyond the dynamical Casimir effect. Phys. Rev. D 2015, 91, 044010. [Google Scholar] [CrossRef] [Green Version]
- Corona-Ugalde, P.; Martín-Martínez, E.; Wilson, C.M.; Mann, R.B. Dynamical Casimir effect in circuit QED for nonuniform trajectories. Phys. Rev. A 2016, 93, 012519. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, F.C.; Mazzitelli, F.D.; Soba, A.; Villar, P.I. Dynamical Casimir effect in superconducting circuits: A numerical approach. Phys. Rev. A 2016, 93, 032501. [Google Scholar] [CrossRef] [Green Version]
- Samos-Saenz de Buruaga, D.N.; Sabín, C. Quantum coherence in the dynamical Casimir effect. Phys. Rev. A 2017, 95, 022307. [Google Scholar] [CrossRef] [Green Version]
- Sabín, C.; Peropadre, B.; Lamata, L.; Solano, E. Simulating superluminal physics with superconducting circuit technology. Phys. Rev. A 2017, 96, 032121. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Mazzitelli, F.D.; Soba, A.; Villar, P.I. Dynamical Casimir effect in a double tunable superconducting circuit. Phys. Rev. A 2018, 98, 022512. [Google Scholar] [CrossRef] [Green Version]
- Bosco, S.; Lindkvist, J.; Johansson, G. Simulating moving cavities in superconducting circuits. Phys. Rev. A 2019, 100, 023817. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Miao, H.; Xiang, Y.; Zhang, S. Enhanced dynamic Casimir effect in temporally and spatially modulated Josephson transmission line. Laser Photonics Rev. 2019, 1900164. [Google Scholar] [CrossRef]
- Dodonov, A.V. Asymptotic mean excitation numbers due to anti-rotating term (AMENDART) in Markovian circuit QED. J. Phys. Conf. Ser. 2011, 274, 012137. [Google Scholar] [CrossRef]
- Dodonov, A.V. Analytical description of nonstationary circuit QED in the dressed-states basis. J. Phys. A: Math. Theor. 2014, 47, 285303. [Google Scholar] [CrossRef]
- Veloso, D.S.; Dodonov, A.V. Prospects for observing dynamical and anti-dynamical Casimir effects in circuit QED due to fast modulation of qubit parameters. J. Phys. B: Atom. Mol. Opt. Phys. 2015, 48, 165503. [Google Scholar] [CrossRef] [Green Version]
- Felicetti, S.; Sabin, C.; Fuentes, I.; Lamata, L.; Romero, G.; Solano, E. Relativistic motion with superconducting qubits. Phys. Rev. B 2015, 92, 064501. [Google Scholar] [CrossRef] [Green Version]
- Hoi, I.-C.; Kockum, A.F.; Tornberg, L.; Pourkabirian, A.; Johansson, G.; Delsing, P.; Wilson, C.M. Probing the quantum vacuum with an artificial atom in front of a mirror. Nature. Phys. 2015, 11, 1045–1049. [Google Scholar] [CrossRef]
- Rossatto, D.Z.; Felicetti, S.; Eneriz, H.; Rico, E.; Sanz, M.; Solano, E. Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics. Phys. Rev. B 2016, 93, 094514. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Militello, B.; Napoli, A.; Messina, A. Effective Landau-Zener transitions in the circuit dynamical Casimir effect with time-varying modulation frequency. Phys. Rev. A 2016, 93, 052505. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.L.S.; Dodonov, A.V. Analytical comparison of the first- and second-order resonances for implementation of the dynamical Casimir effect in nonstationary circuit QED. J. Phys. A: Math. Theor. 2016, 49, 495304. [Google Scholar] [CrossRef] [Green Version]
- García-Álvarez, L.; Felicetti, S.; Rico, E.; Solano, E.; Sabin, C. Entanglement of superconducting qubits via acceleration radiation. Sci. Rep. 2017, 7, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Kockum, A.F.; Miranowicz, A.; Liu, Y.-X.; Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 2017, 718–719, 1–102. [Google Scholar] [CrossRef]
- Zhukov, A.A.; Shapiro, D.S.; Remizov, S.V.; Pogosov, W.V.; Lozovik, Y.E. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation. Phys. Lett. A 2017, 381, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, A.A.; Remizov, S.V.; Pogosov, W.V.; Shapiro, D.S.; Lozovik, Y.E. Superconducting qubit systems as a platform for studying effects of nonstationary electrodynamics in a cavity. JETP Lett. 2018, 108, 63–70. [Google Scholar] [CrossRef]
- Dessano, H.; Dodonov, A.V. One- and three-photon dynamical Casimir effects using a nonstationary cyclic qutrit. Phys. Rev. A 2018, 98, 022520. [Google Scholar] [CrossRef] [Green Version]
- Wustmann, W.; Shumeiko, V. Parametric effects in circuit quantum electrodynamics. Low Temp. Phys. 2019, 45, 848–869. [Google Scholar] [CrossRef] [Green Version]
- Carusotto, I.; Balbinot, R.; Fabbri, A.; Recati, A. Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates. Eur. Phys. J. D 2010, 56, 391–404. [Google Scholar] [CrossRef]
- Jaskula, J.-C.; Partridge, G.B.; Bonneau, M.; Lopes, R.; Ruaudel, J.; Boiron, D.; Westbrook, C.I. Acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate. Phys. Rev. Lett. 2012, 109, 220401. [Google Scholar] [CrossRef] [Green Version]
- Balbinot, R.; Fabbri, A. Amplifying the Hawking signal in BECs. Advances High Energy Phys. 2014, 713574. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Dodonov, V.V. Time crystals in ultracold matter. J. Russ. Laser Res. 2014, 35, 93–100. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Mendonca, J.T. Dynamical Casimir effect in ultra-cold matter with a time-dependent effective charge. Phys. Scr. 2014, T160, 014008. [Google Scholar] [CrossRef]
- Mahajan, S.; Aggarwal, N.; Bhattacherjee, A.B.; ManMohan. Dynamical Casimir effect in superradiant light scattering by Bose-Einstein condensate in an optomechanical cavity. Chin. Phys. B 2014, 23, 020315. [Google Scholar] [CrossRef]
- Marino, J.; Recati, A.; Carusotto, I. Casimir forces and quantum friction from Ginzburg radiation in atomic Bose-Einstein condensates. Phys. Rev. Lett. 2017, 118, 045301. [Google Scholar] [CrossRef] [Green Version]
- Rosanov, N.N.; Vysotina, N.V. Dynamics of hysteresis for a Bose–Einstein condensate soliton in a dynamic trap. Opt. Spectrosc. 2017, 123, 918–927. [Google Scholar] [CrossRef]
- Eckel, S.; Kumar, A.; Jacobson, T.; Spielman, I.B.; Campbell, G.K. A rapidly expanding Bose-Einstein condensate: An expanding universe in the lab. Phys. Rev. X 2018, 8, 021021. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Cha, S.-Y.; Fischer, U.R. Roton entanglement in quenched dipolar Bose-Einstein condensates. Phys. Rev. A 2018, 97, 063611. [Google Scholar] [CrossRef] [Green Version]
- Motazedifard, A.; Dalafi, A.; Naderi, M.H.; Roknizadeh, R. Controllable generation of photons and phonons in a coupled Bose-Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect. Ann. Phys. 2018, 396, 202–219. [Google Scholar] [CrossRef] [Green Version]
- Lange, K.; Peise, J.; Luecke, B.; Gruber, T.; Sala, A.; Polls, A.; Ertmer, W.; Juliá-Díaz, B.; Santos, L.; Klempt, C. Creation of entangled atomic states by an analogue of the Dynamical Casimir effect. New J. Phys. 2018, 20, 103017. [Google Scholar] [CrossRef]
- Michael, M.H.; Schmiedmayer, J.; Demler, E. From the moving piston to the dynamical Casimir effect: Explorations with shaken condensates. Phys. Rev. A 2019, 99, 053615. [Google Scholar] [CrossRef] [Green Version]
- Lawandy, N.M. 2006 Scattering of vacuum states by dynamic plasmon singularities: Generating photons from vacuum. Opt. Lett. 2006, 31, 3650–2. [Google Scholar] [CrossRef] [PubMed]
- Ciuti, C.; Bastard, G.; Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 2005, 72, 115303. [Google Scholar] [CrossRef] [Green Version]
- Koghee, S.; Wouters, M. Dynamical Casimir emission from polariton condensates. Phys. Rev. Lett. 2014, 112, 036406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koghee, S.; Wouters, M. Dynamical quantum depletion in polariton condensates. Phys. Rev. B 2015, 92, 195309. [Google Scholar] [CrossRef] [Green Version]
- Hizhnyakov, V.; Loot, A.; Azizabadi, S.C. Dynamical Casimir effect for surface plasmon polaritons. Phys. Lett. A 2015, 379, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Naylor, W. Vacuum-excited surface plasmon polaritons. Phys. Rev. A 2015, 91, 053804. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Hyuga, H. 2008 Dynamical Casimir effect for magnons in a spinor Bose-Einstein condensate. Phys. Rev. A 2008, 78, 033605. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-D.; Zhao, X.; Jing, H.; Zhou, L.; Zhang, W. Squeezed magnons in an optical lattice: Application to simulation of the dynamical Casimir effect at finite temperature. Phys. Rev. A 2013, 87, 053627. [Google Scholar] [CrossRef]
- Ford, L.H.; Svaiter, N.F. The phononic Casimir effect: An analog model. J, Phys. Conf. Ser. 2009, 161, 012034. [Google Scholar] [CrossRef]
- Motazedifard, A.; Naderi, M.H.; Roknizadeh, R. Dynamical Casimir effect of phonon excitation in the dispersive regime of cavity optomechanics. J. Opt. Soc. Am. B 2017, 34, 642–652. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Qin, W.; Miranowicz, A.; Savasta, S.; Nori, F. Unconventional cavity optomechanics: Nonlinear control of phonons in the acoustic quantum vacuum. Phys. Rev. A 2019, 100, 063827. [Google Scholar] [CrossRef] [Green Version]
- Wittemer, M.; Hakelberg, F.; Kiefer, P.; Schröder, J.-P.; Fey, C.; Schẗzhold, R.; Warring, U.; Schaetz, T. Phonon pair creation by inflating quantum fluctuations in an ion trap. Phys. Rev. Lett. 2019, 123, 180502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jáuregui, R.; Villarreal, C. Transition probabilities of atomic systems between moving walls. Phys. Rev. A 1996, 54, 3480–3488. [Google Scholar] [CrossRef]
- Janowicz, M. Evolution of wave fields and atom-field interactions in a cavity with one oscillating mirror. Phys. Rev. A 1998, 57, 4784–4790. [Google Scholar] [CrossRef]
- Carusotto, I.; Antezza, M.; Bariani, F.; De Liberato, S.; Ciuti, C. Optical properties of atomic Mott insulators: From slow light to dynamical Casimir effects. Phys. Rev. A 2008, 77, 063621. [Google Scholar] [CrossRef] [Green Version]
- Werlang, T.; Dodonov, A.V.; Duzzioni, E.I.; Villas-Bôas, C.J. 2008, Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence. Phys. Rev. A 2008, 78, 053805. [Google Scholar] [CrossRef] [Green Version]
- De Liberato, S.; Gerace, D.; Carusotto, I.; Ciuti, C. Extracavity quantum vacuum radiation from a single qubit. Phys. Rev. A 2009, 80, 053810. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V. How ’cold’ can a Markovian dissipative cavity QED system be? Phys. Scr. 2010, 82, 038102. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, T.Y.; Tian, T.; Pan, S.M. The dynamical Casimir effect versus collective excitations in atom ensemble. Chin. Phys. Lett. 2011, 28, 064202. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Lo Nardo, R.; Migliore, R.; Messina, A.; Dodonov, V.V. Analytical and numerical analysis of the atom-field dynamics in non-stationary cavity QED. J. Phys. B: Atom. Mol. Opt. Phys. 2011, 44, 225502. [Google Scholar] [CrossRef]
- Vacanti, G.; Pugnetti, S.; Didier, N.; Paternostro, M.; Palma, G.M.; Fazio, R.; Vedral, V. Photon production from the vacuum close to the superradiant transition: Linking the dynamical Casimir effect to the Kibble-Zurek mechanism. Phys. Rev. Lett. 2012, 108, 093603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Approximate analytical results on the cavity dynamical Casimir effect in the presence of a two-level atom. Phys. Rev. A 2012, 85, 015805. [Google Scholar] [CrossRef] [Green Version]
- Carusotto, I.; De Liberato, S.; Gerace, D.; Ciuti, C. Back-reaction effects of quantum vacuum in cavity quantum electrodynamics. Phys. Rev. A 2012, 85, 023805. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Dynamical Casimir effect in a cavity with an N-level detector or N-1 two-level atoms. Phys. Rev. A 2012, 86, 015801. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Dynamical Casimir effect in a cavity in the presence of a three-level atom. Phys. Rev. A 2012, 85, 063804. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Dynamical Casimir effect in two-atom cavity QED. Phys. Rev. A 2012, 85, 055805. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Suzuki, T. An approximate solution of the dynamical Casimir effect in a cavity with a two-level atom. Int. J. Geom. Meth. Mod. Phys. 2013, 10, 1350035. [Google Scholar] [CrossRef] [Green Version]
- Garziano, L.; Ridolfo, A.; Stassi, R.; Di Stefano, O.; Savasta, S. Switching on and off of ultrastrong light-matter interaction: Photon statistics of quantum vacuum radiation. Phys. Rev. A 2013, 88, 063829. [Google Scholar] [CrossRef]
- Impens, F.; Ttira, C.C.; Maia Neto, P.A. Non-additive dynamical Casimir atomic phases. J. Phys. B: Atom. Mol. Opt. Phys. 2013, 46, 245503. [Google Scholar] [CrossRef] [Green Version]
- Sheremetyev, V.O.; Trifanova, E.S.; Trifanov, A.I. Conditional evolution of vacuum state in dynamical Casimir effect. J. Phys. Conf. Ser. 2014, 541, 012105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, H.; Zheng, T.Y.; Pan, S.M. Linking the dynamical Casimir effect to the collective excitation effect at finite temperature. Int. J. Theor. Phys. 2014, 53, 510–518. [Google Scholar] [CrossRef]
- Jin, Z.; Han, T.T.; Zheng, T.Y.; Zhang, X.; Pan, S.M.; Asilibieke, B. Influence of interaction of two Atoms on the dynamical Casimir effect. Int. J. Theor. Phys. 2015, 54, 1627–1632. [Google Scholar] [CrossRef]
- Aggarwal, N.; Bhattacherjee, A.B.; Banerjee, A.; Mohan, M. Influence of periodically modulated cavity field on the generation of atomic-squeezed states. J. Phys. B: Atom. Mol. Opt. Phys. 2015, 48, 115501. [Google Scholar] [CrossRef]
- Asilibieke, B.; Xue, Z.; Jie, F.; Liu, H.; Pan, S.M.; Zheng, T.Y.; Yang, H. Dynamical Casimir effect and collective excitation effect at finite temperature without the rotating-wave approximation. Int. J. Theor. Phys. 2015, 54, 2762–2770. [Google Scholar] [CrossRef]
- Trautmann, N.; Hauke, P. Quantum simulation of the dynamical Casimir effect with trapped ions. New J. Phys. 2016, 18, 043029. [Google Scholar] [CrossRef]
- Hoeb, F.; Angaroni, F.; Zoller, J.; Calarco, T.; Strini, G.; Montangero, S.; Benenti, G. Amplification of the parametric dynamical Casimir effect via optimal control. Phys. Rev. A 2017, 96, 033851. [Google Scholar] [CrossRef] [Green Version]
- Remizov, S.V.; Zhukov, A.A.; Shapiro, D.S.; Pogosov, W.V.; Lozovik, Y.E. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum. Phys. Rev. A 2017, 96, 043870. [Google Scholar] [CrossRef] [Green Version]
- Silveri, M.P.; Tuorila, J.A.; Thuneberg, E.V.; Paraoanu, G.S. Quantum systems under frequency modulation. Rep. Prog. Phys. 2017, 80, 056002. [Google Scholar] [CrossRef]
- Lo, L.; Law, C.K. Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A 2018, 98, 063807. [Google Scholar] [CrossRef] [Green Version]
- González-Gutiérrez, C.; de los Santos-Sánchez, O.; Román-Ancheyta, R.; Berrondo, M.; Récamier, J. Lie algebraic approach to a nonstationary atom-cavity system. J. Opt. Soc. Am. B 2018, 35, 1979–1984. [Google Scholar] [CrossRef] [Green Version]
- Benenti, G.; Stramacchia, M.; Strini, G. Dynamical Casimir effect and state transfer in the ultrastrong coupling regime. MDPI Proceedings 2019, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.M.; Asilibieke, B.; Zheng, L.; Tian, T.; Zhang, X.; Zheng, T.Y. The dynamical Casimir effect in squeezed vacuum state. Int. J. Theor. Phys. 2019, 58, 22–30. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.; Zhang, X.; Long, Y.M.; Pan, S.M.; Zheng, T.Y.; Sun, C.; Xue, K. The dynamical behaviors of the two-atom and the dynamical Casimir effect in a non-stationary cavity. Int. J. Theor. Phys. 2019, 58, 786–798. [Google Scholar] [CrossRef]
- Dodonov, A.V. Dynamical Casimir effect via four- and five-photon transitions using a strongly detuned atom. Phys. Rev. A 2019, 100, 032510. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Khalek, S.; Berrada, K. Entanglement, nonclassical properties, and geometric phase in circuit quantum electrodynamics with relativistic motion. Solid State Commun. 2019, 290, 31–36. [Google Scholar] [CrossRef]
- Svidzinsky, A.A.; Ben-Benjamin, J.S.; Fulling, S.A.; Page, D.N. Excitation of an atom by a uniformly accelerated mirror through virtual transitions. Phys. Rev. Lett. 2018, 121, 071301. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Strong modifications of the field statistics in the cavity dynamical Casimir effect due to the interaction with two-level atoms and detectors. Phys. Lett. A 2011, 375, 4261–4267. [Google Scholar] [CrossRef]
- Benenti, G.; Siccardi, S.; Strini, G. Exotic states in the dynamical Casimir effect. Eur. Phys. J. D 2014, 68, 139. [Google Scholar] [CrossRef] [Green Version]
- Motazedifard, A.; Naderi, M.H.; Roknizadeh, R. Analogue model for controllable Casimir radiation in a nonlinear cavity with amplitude-modulated pumping: Generation and quantum statistical properties. J. Opt. Soc. Am. B 2015, 32, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.C.; Dodonov, A.V. Anti-dynamical Casimir effect with an ensemble of qubits. Phys. Lett. A 2016, 380, 1542–1546. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Valente, D.; Werlang, T. Antidynamical Casimir effect as a resource for work extraction. Phys. Rev. A 2017, 96, 012501. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Díaz-Guevara, J.J.; Napoli, A.; Militello, B. Speeding up the antidynamical Casimir effect with nonstationary qutrits. Phys. Rev. A 2017, 96, 032509. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Valente, D.; Werlang, T. Quantum power boost in a nonstationary cavity-QED quantum heat engine. J. Phys. A: Math. Theor. 2018, 51, 365302. [Google Scholar] [CrossRef] [Green Version]
- Angaroni, F.; Benenti, G.; Strini, G. Applications of Picard and Magnus expansions to the Rabi model. Eur. Phys. J. D 2018, 72, 188. [Google Scholar] [CrossRef]
- Antezza, M.; Braggio, C.; Carugno, G.; Noto, A.; Passante, R.; Rizzuto, L.; Ruoso, G.; Spagnolo, S. Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling. Phys. Rev. Lett. 2014, 113, 023601. [Google Scholar] [CrossRef] [Green Version]
- Glaetze, A.W.; Hammerer, K.; Daley, A.J.; Platt, R.; Zoller, P. A single trapped atom in front of an oscillating mirror. Opt. Commun. 2010, 283, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, A.; Domina, M.; Rizzuto, L.; Passante, R. Spontaneous emission of an atom near an oscillating mirror. Symmetry 2019, 11, 1384. [Google Scholar] [CrossRef] [Green Version]
- Scully, M.O.; Kocharovsky, V.V.; Belyanin, A.; Fry, E.; Capasso, F. Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics. Phys. Rev. Lett. 2003, 91, 243004. [Google Scholar] [CrossRef] [Green Version]
- Tadigadapa, S.; Mateti, K. Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 2009, 20, 092001. [Google Scholar] [CrossRef]
- Kim, W.-J.; Brownell, J.H.; Onofrio, R. Detectability of dissipative motion in quantum vacuum via superradiance. Phys. Rev. Lett. 2006, 96, 200402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownell, J.H.; Kim, W.J.; Onofrio, R. Modelling superradiant amplification of Casimir photons in very low dissipation cavities. J. Phys. A: Math. Theor. 2008, 41, 164026. [Google Scholar] [CrossRef]
- Sanz, M.; Wieczorek, W.; Gröblacher, S.; Solano, E. Electro-mechanical Casimir effect. Quantum 2018, 2, 91. [Google Scholar] [CrossRef]
- Wang, H.; Blencowe, M.P.; Wilson, C.M.; Rimberg, A.J. Mechanically generating entangled photons from the vacuum: A microwave circuit-acoustic resonator analog of the oscillatory Unruh effect. Phys. Rev. A 2019, 99, 053833. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Macrì, V.; Miranowicz, A.; Savasta, S.; Nori, F. Emission of photon pairs by mechanical stimulation of the squeezed vacuum. Phys. Rev. A 2019, 100, 062501. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitch, E.; Heritage, J.P.; Aspnes, D.E.; Yafet, Y. Virtual photoconductivity. Phys. Rev. Lett. 1989, 63, 976–979. [Google Scholar] [CrossRef]
- Okushima, T.; Shimizu, A. Photon emission from a false vacuum of semiconductors. Japan. J. Appl. Phys. 1995, 34, 4508–4510. [Google Scholar] [CrossRef]
- Lozovik, Y.E.; Tsvetus, V.G.; Vinogradov, E.A. Parametric excitation of vacuum by use of femtosecond laser pulses. Phys. Scr. 1995, 52, 184–190. [Google Scholar] [CrossRef]
- Braggio, C.; Bressi, G.; Carugno, G.; Lombardi, A.; Palmieri, A.; Ruoso, G.; Zanello, D. Semiconductor microwave mirror for a measurement of the dynamical Casimir effect. Rev. Sci. Instrum. 2004, 75, 4967–4970. [Google Scholar] [CrossRef]
- Braggio, C.; Bressi, G.; Carugno, G.; Del Noce, C.; Galeazzi, G.; Lombardi, A.; Palmieri, A.; Ruoso, G.; Zanello, D. A novel experimental approach for the detection of the dynamic Casimir effect. Europhys. Lett. 2005, 70, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Agnesi, A.; Braggio, C.; Bressi, G.; Carugno, G.; Galeazzi, G.; Pirzio, F.; Reali, G.; Ruoso, G.; Zanello, D. MIR status report: An experiment for the measurement of the dynamical Casimir effect. J. Phys. A: Math. Theor. 2008, 41, 164024. [Google Scholar] [CrossRef]
- Dodonov, V.V. Dynamical Casimir effect meets material science. IOP Conf. Ser. Mater. Sci. Eng. 2019, 474, 012009. [Google Scholar] [CrossRef]
- Hagenmuller, D. All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap. Phys. Rev. B 2016, 93, 235309. [Google Scholar] [CrossRef]
- Bialynicka-Birula, Z.; Bialynicki-Birula, I. Space-time description of squeezing. J. Opt. Soc. Am. B 1987, 4, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Lobashov, A.A.; Mostepanenko, V.M. Quantum Effects in Nonlinear Insulating Materials in the Presence of a Nonstationary Electromagnetic Field. Theor. Math. Phys. 1991, 86, 303–309. [Google Scholar] [CrossRef]
- Lobashov, A.A.; Mostepanenko, V.M. Quantum Effects Associated With Parametric Generation of Light and the Theory of Squeezed States. Theor. Math. Phys. 1991, 88, 913–925. [Google Scholar] [CrossRef]
- Hizhnyakov, V.V. Quantum emission of a medium with a time-dependent refractive index. Quant. Opt. 1992, 4, 277–280. [Google Scholar] [CrossRef]
- Johnston, H.; Sarkar, S. Moving mirrors and time-varying dielectrics. Phys. Rev. A 1995, 51, 4109–4115. [Google Scholar] [CrossRef]
- Artoni, M.; Bulatov, A.; Birman, J. Zero-point noise in a nonstationary dielectric cavity. Phys. Rev. A 1996, 53, 1031–1035. [Google Scholar] [CrossRef]
- Saito, H.; Hyuga, H. The dynamical Casimir effect for an oscillating dielectric model. J. Phys. Soc. Jpn. 1996, 65, 3513–3523. [Google Scholar] [CrossRef]
- Cirone, M.; Rza̧źewski, K.; Mostowski, J. Photon generation by time-dependent dielectric: A soluble model. Phys. Rev. A 1997, 55, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, J.T.; Guerreiro, A.; Martins, A.M. Quantum theory of time refraction. Phys. Rev. A 2000, 62. [Google Scholar] [CrossRef]
- Braunstein, S.L. A quantum optical shutter. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S28–S31. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, J.T.; Guerreiro, A. Time refraction and the quantum properties of vacuum. Phys. Rev. A 2005, 72, 063805. [Google Scholar] [CrossRef]
- Hizhnyakov, V.; Kaasik, H. Emission by dielectric with oscillating refractive index. J. Phys. Conf. Ser. 2005, 21, 155–60. [Google Scholar] [CrossRef]
- De Liberato, S.; Ciuti, C.; Carusotto, I. Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency. Phys. Rev. Lett. 2007, 98, 103602. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. 2008 Dynamical Casimir effect in oscillating media. Phys. Rev. A 2007, 78, 042109. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.R.; Kim, D.; Chaabi, N.; Maamache, M.; Menouar, S. Zero-point fluctuations of quantized electromagnetic fields in time-varying linear media. J. Korean Phys. Soc. 2010, 56, 775–781. [Google Scholar]
- Bei, X.-M.; Liu, Z.-Z. Quantum radiation in time-dependent dielectric media. J. Phys. B: Atom. Mol. Opt. Phys. 2011, 44, 205501. [Google Scholar] [CrossRef]
- Ueta, T. The dynamic Casimir effect within a vibrating metal photonic crystal. Appl. Phys. A 2014, 116, 863–871. [Google Scholar] [CrossRef]
- Westerberg, N.; Cacciatori, S.; Belgiorno, F.; Dalla Piazza, F.; Faccio, D. Experimental quantum cosmology in time-dependent optical media. New J. Phys. 2014, 16, 075003. [Google Scholar] [CrossRef] [Green Version]
- Larré, P.-E.; Carusotto, I. Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches. Phys. Rev. A 2015, 92, 043802. [Google Scholar] [CrossRef] [Green Version]
- Lotfipour, H.; Allameh, Z.; Roknizadeh, R.; Heydari, H. Two schemes for characterization and detection of the squeezed light: Dynamical Casimir effect and nonlinear materials. J. Phys. B: Atom. Mol. Opt. Phys. 2016, 49, 065503. [Google Scholar] [CrossRef] [Green Version]
- Hasan, F.; O’Dell, D.H.J. Parametric amplification of light in a cavity with a moving dielectric membrane: Landau-Zener problem for the Maxwell field. Phys. Rev. A 2016, 94, 043823. [Google Scholar] [CrossRef] [Green Version]
- Ameri, V.; Eghbali-Arani, M.; Soltani, M. Perturbative approach to dynamical Casimir effect in an interface of dielectric mediums. Eur. Phys. J. D 2016, 70, 254. [Google Scholar] [CrossRef] [Green Version]
- Westerberg, N.; Prain, A.; Faccio, D.; Öhberg, P. Vacuum radiation and frequency-mixing in linear light-matter systems. J. Phys. Commun. 2019, 3, 065012. [Google Scholar] [CrossRef]
- Hizhnyakov, V. Emission of photon pairs in optical fiber - effect of zero-point fluctuations. arXiv 2019, arXiv:1907.04321. [Google Scholar]
- Dezael, F.X.; Lambrecht, A. Analogue Casimir radiation using an optical parametric oscillator. EPL 2010, 89, 14001. [Google Scholar] [CrossRef]
- Faccio, D.; Carusotto, I. Dynamical Casimir Effect in optically modulated cavities. EPL 2011, 96, 24006. [Google Scholar] [CrossRef]
- Hizhnyakov, V.; Kaasik, H.; Tehver, I. Spontaneous nonparametric down-conversion of light. Appl. Phys. A 2014, 115, 563–568. [Google Scholar] [CrossRef]
- Hizhnyakov, V.; Loot, A.; Azizabadi, S.C. Enhanced dynamical Casimir effect for surface and guided waves. Appl. Phys. A 2016, 122, 333. [Google Scholar] [CrossRef]
- Vezzoli, S.; Mussot, A.; Westerberg, N.; Kudlinski, A.; Saleh, H.D.; Prain, A.; Biancalana, F.; Lantz, E.; Faccio, D. Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Commun. Phys. 2019, 2, 84. [Google Scholar] [CrossRef]
- Román-Ancheyta, R.; Ramos-Prieto, I.; Perez-Leija, A.; Kurt, B.; León-Montiel, R.d.J. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Phys. Rev. A 2017, 96, 032501. [Google Scholar]
- Tanaka, S.; Kanki, K. The dynamical Casimir effect in a dissipative optomechanical cavity interacting with photonic crystal. Physics 2020, 2, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Dynamical Casimir effect in microwave cavities containing nonlinear crystals. J. Phys. Condens. Matter 2015, 27, 214009. [Google Scholar] [CrossRef] [PubMed]
- Braggio, C.; Carugno, G.; Borghesani, A.F.; Dodonov, V.V.; Pirzio, F.; Ruoso, G. Generation of microwave fields in cavities with laser-excited nonlinear media: Competition between the second- and third-order optical nonlinearities. J. Opt. 2018, 20, 095502. [Google Scholar] [CrossRef] [Green Version]
- Grove, P.G. On the detection of particle and energy fluxes in two dimensions. Class. Quantum Grav. 1986, 3, 793–800. [Google Scholar] [CrossRef]
- Dodonov, V.V. Photon creation and excitation of a detector in a cavity with a resonantly vibrating wall. Phys. Lett. A 1995, 207, 126–132. [Google Scholar] [CrossRef]
- Sarkisyan, E.M.; Petrosyan, K.G.; Oganesyan, K.B.; Hakobyan, A.A.; Saakyan, V.A.; Gevorkian, S.G.; Izmailyan, N.S.; Hu, C.K. Detection of Casimir photons with electrons. Laser Phys. 2008, 18, 621–624. [Google Scholar] [CrossRef]
- Braggio, C.; Bressi, G.; Carugno, G.; Della Valle, F.; Galeazzi, G.; Ruoso, G. Characterization of a low noise microwave receiver for the detection of vacuum photons. Nucl. Instr. Meth. Phys. Res. A 2009, 603, 451–455. [Google Scholar] [CrossRef]
- Kawakubo, T.; Yamamoto, K. Photon creation in a resonant cavity with a nonstationary plasma mirror and its detection with Rydberg atoms. Phys. Rev. A 2011, 83, 013819. [Google Scholar] [CrossRef] [Green Version]
- de Castro, A.S.M.; Cacheffo, A.; Dodonov, V.V. Influence of the field-detector coupling strength on the dynamical Casimir effect. Phys. Rev. A 2013, 87, 033809. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V.; Dodonov, V.V. Photon statistics in the dynamical Casimir effect modified by a harmonic oscillator detector. Phys. Scr. 2013, T153, 014017. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, A.V. Continuous intracavity monitoring of the dynamical Casimir effect. Phys. Scr. 2013, 87, 038103. [Google Scholar] [CrossRef] [Green Version]
- de Castro, A.S.M.; Dodonov, V.V. Parametric excitation of a cavity field mode coupled to a harmonic oscillator detector. J. Phys. A: Math. Theor. 2013, 46, 395304. [Google Scholar] [CrossRef]
- de Castro, A.S.M.; Dodonov, V.V. Continuous monitoring of the dynamical Casimir effect with a damped detector. Phys. Rev. A 2014, 89, 063816. [Google Scholar] [CrossRef]
- Miroshnichenko, G.P.; Trifanova, E.S.; Trifanov, A.I. An indirect measurement protocol of intracavity mode quadratures dispersion in dynamical Casimir effect. Eur. Phys. J. D 2015, 69, 137. [Google Scholar] [CrossRef] [Green Version]
- Angaroni, F.; Benenti, G.; Strini, G. Reconstruction of electromagnetic field states by a probe qubit. Eur. Phys. J. D 2016, 70, 225. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, J.T. Time refraction and the perturbed quantum vacuum. J. Rus. Laser Res. 2011, 32, 445–453. [Google Scholar] [CrossRef]
- Friis, N.; Lee, A.R.; Louko, J. Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D 2013, 88, 064028. [Google Scholar] [CrossRef] [Green Version]
- Benenti, G.; Strini, G. Dynamical Casimir effect and minimal temperature in quantum thermodynamics. Phys. Rev. A 2015, 91, 020502. [Google Scholar] [CrossRef] [Green Version]
- Merlin, R. Orthogonality catastrophes in quantum electrodynamics. Phys. Rev. A 2017, 95, 023802. [Google Scholar] [CrossRef] [Green Version]
- de Melo e Souza, R.; Impens, F.; Maia Neto, P.A. Microscopic dynamical Casimir effect. Phys. Rev. A 2018, 97, 032514. [Google Scholar] [CrossRef] [Green Version]
- Ottewill, A.C.; Takagi, S. Radiation by moving mirrors in curved space-time. Prog. Theor. Phys. 1988, 79, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Ruser, M.; Durrer, R. Dynamical Casimir effect for gravitons in bouncing braneworlds. Phys. Rev. D 2000, 76, 104014. [Google Scholar] [CrossRef] [Green Version]
- Céleri, L.C.; Pascoal, F.; Moussa, M.H.Y. Action of the gravitational field on the dynamical Casimir effect. Class. Quantum Grav. 2009, 26, 105014. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. Dynamical Casimir effect in a small compact manifold for the Maxwell vacuum. Phys. Rev. D 2015, 91, 105027. [Google Scholar] [CrossRef] [Green Version]
- Lock, M.P.E.; Fuentes, I. Dynamical Casimir effect in curved spacetime. New J. Phys. 2017, 19, 073005. [Google Scholar] [CrossRef]
- Brevik, I.; Milton, K.A.; Odintsov, S.D.; Osetrin, K.E. Dynamical Casimir effect and quantum cosmology. Phys. Rev. D 2000, 62, 064005. [Google Scholar] [CrossRef] [Green Version]
- Rudnicki, L.; Bialynicki-Birula, I. Dynamical Casimir effect in uniformly accelerated media. Opt. Commun. 2010, 283, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Sorge, F.; Wilson, J.H. Casimir effect in free fall towards a Schwarzschild black hole. Phys. Rev. D 2019, 100, 105007. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Frolov, V.P. Black holes and quantum processes in them. Sov. Phys. Uspekhi 1976, 19, 244–262. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z. Electromagnetic radiation by gravitating bodies. Phys. Rev. A 2008, 77, 052103. [Google Scholar] [CrossRef] [Green Version]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef] [Green Version]
- Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys. 2008, 80, 787–838. [Google Scholar] [CrossRef] [Green Version]
- Ben-Benjamin, J.S.; Scully, M.O.; Fulling, S.A.; Lee, D.M.; Page, D.N.; Svidzinsky, A.A.; Zubairy, M.S.; Duff, M.J.; Glauber, R.; Schleich, W.P.; et al. Unruh acceleration radiation revisited. Int. J. Mod. Phys. A 2019, 34, 1941005. [Google Scholar] [CrossRef]
- Sorge, F. Dynamical Casimir Effect in a kicked box. Int. J. Mod. Phys. A 2006, 21, 6173–6182. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Brodin, G.; Marklund, M. Vacuum effects in a vibrating cavity: Time refraction, dynamical Casimir effect, and effective Unruh acceleration. Phys. Lett. A 2008, 372, 5621–5624. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, A. On the quantum space-time structure of light. J. Plasma Phys. 2010, 76, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R. On spin-statistics and Bogoliubov transformations in flat space-time with acceleration conditions. Int. J. Mod. Phys. A 2013, 28, 1350008. [Google Scholar] [CrossRef] [Green Version]
- Fei, Z.; Zhang, J.; Pan, R.; Qiu, T.; Quan, H.T. Quantum work distributions associated with the dynamical Casimir effect. Phys. Rev. A 2019, 99, 052508. [Google Scholar] [CrossRef] [Green Version]
- Luis, A.; Sánchez-Soto, L.L. Multimode quantum analysis of an interferometer with moving mirrors. Phys. Rev. A 1992, 45, 8228–8234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brif, C.; Mann, A. Quantum statistical properties of the radiation field in a cavity with a movable mirror. J. Opt. B Quantum Semiclass. Opt. 2000, 2, 53–61. [Google Scholar] [CrossRef]
- Maclay, G.J.; Forward, R.L. A Gedanken Spacecraft that Operates Using the Quantum Vacuum (Dynamic Casimir Effect). Found. Phys. 2004, 34, 477–500. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Dynamical Casimir effect in a nondegenerate cavity with losses and detuning. Phys. Rev. A 1998, 58, 4147–4152. [Google Scholar] [CrossRef]
- Dodonov, V.V. Time-dependent quantum damped oscillator with ‘minimal noise’: Application to the nonstationary Casimir effect in nonideal cavities. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S445–S451. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Dodonov, A.V. The nonstationary Casimir effect in a cavity with periodical time-dependent conductivity of a semiconductor mirror. J. Phys. A: Math. Gen. 2006, 39, 6271–6281. [Google Scholar] [CrossRef]
- Dodonov, V.V. Photon distribution in the dynamical Casimir effect with an account of dissipation. Phys. Rev. A 2009, 80, 023814. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Mazzitelli, F.D. The quantum open systems approach to the dynamical Casimir effect. Phys. Scr. 2010, 82, 038113. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Quantum damped nonstationary oscillator and Dynamical Casimir Effect. Rev. Mex. Fis. S 2011, 57, 120–127. [Google Scholar]
- Settineri, A.; Macrí, V.; Ridolfo, A.; Di Stefano, O.; Kockum, A.F.; Nori, F.; Savasta, S. Dissipation and thermal noise in hybrid quantum systems in the ultrastrong-coupling regime. Phys. Rev. A 2018, 98, 053834. [Google Scholar] [CrossRef] [Green Version]
- Dalvit, D.A.R.; Maia Neto, P.A. Decoherence via the dynamical Casimir effect. Phys. Rev. Lett. 2000, 84, 798–801. [Google Scholar] [CrossRef] [Green Version]
- Maia Neto, P.A.; Dalvit, D.A.R. Radiation pressure as a source of decoherence. Phys. Rev. A 2000, 62, 042103. [Google Scholar] [CrossRef] [Green Version]
- Schützhold, R.; Tiersch, M. Decoherence versus dynamical Casimir effect. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S120–S125. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Andreata, M.A.; Mizrahi, S.S. Decoherence and transfer of quantum states of field modes in a one-dimensional cavity with an oscillating boundary. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S468–479. [Google Scholar] [CrossRef]
- Céleri, L.C.; Pascoal, F.; de Ponte, M.A.; Moussa, M.H.Y. Number of particle creation and decoherence in the nonideal dynamical Casimir effect at finite temperature. Ann. Phys. 2009, 324, 2057–2073. [Google Scholar] [CrossRef] [Green Version]
- Román-Ancheyta, R.; de los Santos-Sánchez, O.; González-Gutiérrez, C. Damped Casimir radiation and photon correlation measurements. J. Opt. Soc. Am. B 2018, 35, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Narozhny, N.B.; Fedotov, A.M.; Lozovik, Y.E. Dynamical Casimir and Lamb effects and entangled photon states. Laser Phys. 2003, 13, 298–304. [Google Scholar]
- Dodonov, A.V.; Dodonov, V.V.; Mizrahi, S.S. Separability dynamics of two-mode Gaussian states in parametric conversion and amplification. J. Phys. A: Math. Gen. 2005, 38, 683–696. [Google Scholar] [CrossRef]
- Andreata, M.A.; Dodonov, V.V. Dynamics of entanglement between field modes in a one-dimensional cavity with a vibrating boundary. J. Opt. B Quantum Semiclass. Opt. 2005, 7, S11–S20. [Google Scholar] [CrossRef]
- Bruschi, D.E.; Louko, J.; Faccio, D. Entanglement generation in relativistic cavity motion. J. Phys. Conf. Ser. 2013, 442, 012024. [Google Scholar] [CrossRef]
- Bruschi, D.E.; Louko, J.; Faccio, D.; Fuentes, I. Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities. New J. Phys. 2013, 15, 073052. [Google Scholar] [CrossRef]
- Busch, X.; Parentani, R. Dynamical Casimir effect in dissipative media: When is the final state nonseparable? Phys. Rev. D 2013, 88, 045023. [Google Scholar] [CrossRef] [Green Version]
- Busch, X.; Parentani, R.; Robertson, S. Quantum entanglement due to a modulated dynamical Casimir effect. Phys. Rev. A 2014, 89, 063606. [Google Scholar] [CrossRef] [Green Version]
- Felicetti, S.; Sanz, M.; Lamata, L.; Romero, G.; Johansson, G.; Delsing, P.; Solano, E. Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 2014, 113, 093602. [Google Scholar] [CrossRef] [Green Version]
- Finazzi, S.; Carusotto, I. Entangled phonons in atomic Bose-Einstein condensates. Phys. Rev. A 2014, 90, 033607. [Google Scholar] [CrossRef] [Green Version]
- Sinha, K.; Lin, S.-Y.; Hu, B.L. Mirror-field entanglement in a microscopic model for quantum optomechanics. Phys. Rev. A 2015, 92, 023852. [Google Scholar] [CrossRef] [Green Version]
- Berman, O.L.; Kezerashvili, R.Y.; Lozovik, Y.E. Quantum entanglement for two qubits in a nonstationary cavity. Phys. Rev. A 2016, 94, 052308. [Google Scholar] [CrossRef] [Green Version]
- Amico, M.; Berman, O.L.; Kezerashvili, R.Y. Tunable quantum entanglement of three qubits in a nonstationary cavity. Phys. Rev. A 2017, 96, 032328. [Google Scholar] [CrossRef] [Green Version]
- Amico, M.; Berman, O.L.; Kezerashvili, R.Y. Dissipative quantum entanglement dynamics of two and three qubits due to the dynamical Lamb effect. Phys. Rev. A 2018, 98, 042325. [Google Scholar] [CrossRef] [Green Version]
- Agustí, A.; Solano, E.; Sabín, C. Entanglement through qubit motion and the dynamical Casimir effect. Phys. Rev. A 2019, 99, 052328. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, H.; Wang, Z.; Zheng, T. Asymmetric quantum correlations in the dynamical Casimir effect. Sci. Rep. 2019, 9, 9552. [Google Scholar] [CrossRef]
- Romualdo, I.; Hackl, L.; Yokomizo, N. Entanglement production in the dynamical Casimir effect at parametric resonance. Phys. Rev. D 2019, 100, 065022. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.; Tjoa, E.; Mann, R.B. Entanglement harvesting with moving mirrors. JHEP 2019, 06, 021. [Google Scholar] [CrossRef] [Green Version]
- Sabin, C.; Fuentes, I.; Johansson, G. Quantum discord in the dynamical Casimir effect. Phys. Rev. A 2015, 92, 012314. [Google Scholar] [CrossRef] [Green Version]
- Benenti, G.; D’Arrigo, A.; Siccardi, S.; Strini, G. Dynamical Casimir effect in quantum-information processing. Phys. Rev. A 2014, 90, 052313. [Google Scholar] [CrossRef] [Green Version]
- Stassi, R.; De Liberato, S.; Garziano, L.; Spagnolo, B.; Savasta, S. Quantum control and long-range quantum correlations in dynamical Casimir arrays. Phys. Rev. A 2015, 92, 013830. [Google Scholar] [CrossRef]
- Sabin, C.; Adesso, G. Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 2015, 92, 042107. [Google Scholar] [CrossRef] [Green Version]
- Peropadre, B.; Huh, J.; Sabin, C. Dynamical Casimir effect for Gaussian boson sampling. Sci. Rep. 2018, 8, 3751. [Google Scholar] [CrossRef] [PubMed]
- Narozhny, N.B.; Fedotov, A.M.; Lozovik, Y.E. Dynamical Lamb effect versus dynamical Casimir effect. Phys. Rev. A 2001, 64, 053807. [Google Scholar] [CrossRef]
- Shapiro, D.S.; Zhukov, A.A.; Pogosov, W.V.; Lozovik, Y.E. Dynamical Lamb effect in a tunable superconducting qubit-cavity system. Phys. Rev. A 2015, 91, 063814. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, A.A.; Shapiro, D.S.; Pogosov, W.V.; Lozovik, Y.E. Dynamical Lamb effect versus dissipation in superconducting quantum circuits. Phys. Rev. A 2016, 93, 063845. [Google Scholar] [CrossRef] [Green Version]
- Amico, M.; Berman, O.L.; Kezerashvili, R.Y. Dynamical Lamb effect in a superconducting circuit. Phys. Rev. A 2019, 100, 013841. [Google Scholar] [CrossRef] [Green Version]
- Passante, R.; Persico, F. Time-dependent Casimir-Polder forces and partially dressed states. Phys. Lett. A 2003, 312, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Rizzuto, L.; Passante, R.; Persico, F. Dynamical Casimir-Polder energy between an excited- and a ground-state atom. Phys. Rev. A 2004, 70, 012107. [Google Scholar] [CrossRef] [Green Version]
- Westlund, P.O.; Wennerstrom, H. Photon emission from translational energy in atomic collisions: A dynamic Casimir-Polder effect. Phys. Rev. A 2005, 71, 062106. [Google Scholar] [CrossRef]
- Vasile, R.; Passante, R. Dynamical Casimir-Polder force between an atom and a conducting wall. Phys. Rev. A 2008, 78, 032108. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Zheng, T.Y.; Wang, Z.H.; Zhang, X. Dynamical Casimir-Polder force in a one-dimensional cavity with quasimodes. Phys. Rev. A 2010, 82, 013810. [Google Scholar] [CrossRef]
- Messina, R.; Vasile, R.; Passante, R. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall. Phys. Rev. A 2010, 82, 062501. [Google Scholar] [CrossRef] [Green Version]
- Dedkov, G.V.; Kyasov, A.A. Dynamical Casimir-Polder atom-surface interaction. Surf. Sci. 2012, 606, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Haakh, H.R.; Henkel, C.; Spagnolo, S.; Rizzuto, L.; Passante, R. Dynamical Casimir-Polder interaction between an atom and surface plasmons. Phys. Rev. A 2014, 89, 022509. [Google Scholar] [CrossRef] [Green Version]
- Armata, F.; Vasile, R.; Barcellona, P.; Buhmann, S.Y.; Rizzuto, L.; Passante, R. Dynamical Casimir-Polder force between an excited atom and a conducting wall. Phys. Rev. A 2016, 94, 042511. [Google Scholar] [CrossRef] [Green Version]
- Passante, R. Dispersion interactions between neutral atoms and the quantum electrodynamical vacuum. Symmetry 2018, 10, 735. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodonov, V. Fifty Years of the Dynamical Casimir Effect. Physics 2020, 2, 67-104. https://doi.org/10.3390/physics2010007
Dodonov V. Fifty Years of the Dynamical Casimir Effect. Physics. 2020; 2(1):67-104. https://doi.org/10.3390/physics2010007
Chicago/Turabian StyleDodonov, Viktor. 2020. "Fifty Years of the Dynamical Casimir Effect" Physics 2, no. 1: 67-104. https://doi.org/10.3390/physics2010007
APA StyleDodonov, V. (2020). Fifty Years of the Dynamical Casimir Effect. Physics, 2(1), 67-104. https://doi.org/10.3390/physics2010007