Saga of Superfluid Solids
Abstract
:1. Introduction
2. What Is a Superfluid Solid
- (i)
- It must be a solid that is a rigid system being able to keep for long time its shape in a finite range of external conditions. Long time implies the time that is much longer than any of the characteristic internal times, such as interaction time and local equilibration time.
- (ii)
- It must possess the above properties being in an equilibrium state, meaning either an absolutely equilibrium state or a metastable state. This does not impose the requirement of necessarily being periodic. Amorphous solids also are solids. In addition, crystals with defects are not ideally periodic.
- (iii)
- It must demonstrate, inside its volume, superfluidity as a frictionless motion of matter. This may be connected with the spontaneous breaking of gauge symmetry, at least locally, although this is not compulsory.
3. Model of Coherent Crystal
4. Model of Vacancion Superfluidity
5. Nonclassical Rotation Inertia
6. Shear Modulus Stiffening
7. Important Role of Disorder
8. Results of Scattering Experiments
9. Mass Flux Experiments
10. Monte Carlo Simulations
11. Solids with Regions of Disorder
12. Periodic Droplet Structures
13. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kapitza, P. Viscosity of liquid Helium below the λ point. Nature 1938, 141, 74. [Google Scholar] [CrossRef]
- Allen, J.F.; Misener, A.D. Flow of liquid Helium II. Nature 1938, 141, 75. [Google Scholar] [CrossRef]
- Landau, L. The theory of the superfluidity of Helium II. Phys. Rev. 1941, 60, 356–358. [Google Scholar] [CrossRef]
- Landau, L. On the theory of superfluidity. Phys. Rev. 1949, 75, 884–885. [Google Scholar]
- Landau, L.D. The theory of the superfluidity of Helium II. Zh. Exp. Teor. Fiz. 1941, 11, 592, English translation in Collected Papers of L.D. Landau; Pergamon: Oxford, UK, 1965; pp. 301–330. [Google Scholar] [CrossRef]
- Tisza, L. Transport phenomena in Helium II. Nature 1938, 141, 913. [Google Scholar] [CrossRef]
- Andronikashvili, E.L. A direct observation of two kinds of motion in helium II. J. Phys. (USSR) 1946, 10, 201–223. [Google Scholar]
- Andronikashvili, E.L. Temperature dependence of the normal density of He II. Zh. Exp. Teor. Fiz. 1948, 18, 424–431. [Google Scholar]
- Andronikashvili, E.L.; Mamaladze, Y.G. Rotation of Helium II. Prog. Low Temp. Phys. 1967, 5, 79–160. [Google Scholar]
- Lifshitz, E.M. Superfluidity. Sci. Am. 1958, 198, 30–35, Reprinted in Perspectives in Theoretical Physics: The Collected Papers of E.M. Lifshitz; Pitaevskii, L.P., Ed.; Pergamon Press Plc: Oxford, UK, 1992; pp. 413–424. [Google Scholar] [CrossRef]
- Andronikashvili, E.L. Reflections on Liquid Helium; American Institute of Physics: New York, NY, USA, 1990. [Google Scholar]
- Balibar, S. The discovery of superfluidity. J. Low Temp. Phys. 2007, 146, 441–470. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A. Introduction to Superfluidity; Springer: Berlin, Germany, 2014. [Google Scholar]
- Prokof’ev, N. What makes a crystal supersolid? Adv. Phys. 2007, 56, 381–402. [Google Scholar] [CrossRef] [Green Version]
- Kuklov, A.B.; Prokof’ev, N.V.; Svistunov, B.V. How solid is supersolid? Physics (APS) 2011, 4, 109. [Google Scholar] [CrossRef] [Green Version]
- Boninsegni, M.; Prokof’ev, N.V. Supersolids: What and where are they? Rev. Mod. Phys. 2012, 84, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.C. Frictionless fluids from bacterial teamwork. Nature 2015, 525, 37–39. [Google Scholar] [CrossRef]
- Matsuda, H.; Tsumoto, T. Off-diagonal long-range order in solids. Suppl. Prog. Theor. Phys. 1970, 46, 411–436. [Google Scholar] [CrossRef] [Green Version]
- Mullin, W.J. Cell model of a Bose-condensed solid. Phys. Rev. Lett. 1971, 26, 611–614. [Google Scholar] [CrossRef]
- Oxford Living Dictionaries; Oxford University Press: Oxford, UK, 2018.
- Bogolubov, N.N. Lectures on Quantum Statistics; Ryadyanska Shkola: Kiev, Ukraine, 1949. [Google Scholar]
- Bogoliubov, N.N. Lectures on Quantum Statistics. Volume 1: Quantum Statistics; Gordon and Breach: New York, NY, USA, 1967. [Google Scholar]
- Bogoliubov, N.N. Lectures on Quantum Statistics. Volume 2: Quasi-Averages; Gordon and Breach: New York, NY, USA, 1970. [Google Scholar]
- Bogolubov, N.N. Quantum Statistical Mechanics; World Scientific: Singapore, 2015. [Google Scholar]
- Gross, E.P. Small oscillation theory of the interaction of a particle and scalar field. Phys. Rev. 1955, 100, 1571–1578. [Google Scholar] [CrossRef]
- Gross, E.P. Unified theory of interacting bosons. Phys. Rev. 1957, 106, 161–162. [Google Scholar] [CrossRef]
- Gross, E.P. Classical theory of boson wave fields. Ann. Phys. (N. Y.) 1958, 4, 57–74. [Google Scholar] [CrossRef]
- Gross, E.P. Quantum theory of interacting bosons. Ann. Phys. (N. Y.) 1960, 9, 292–324. [Google Scholar] [CrossRef]
- Gross, E.P. Periodic ground states in the many-body problem. Phys. Rev. Lett. 1960, 4, 599–601. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cimento 1961, 20, 454–477. [Google Scholar] [CrossRef] [Green Version]
- Gross, E.P. Hydrodynamics of a superfluid condensate. J. Math. Phys. 1963, 4, 195–207. [Google Scholar] [CrossRef]
- Kirzhnits, D.A.; Nepomnyashchii, Y.A. Coherent crystallization of quantum liquid. J. Exp. Theor. Phys. 1971, 32, 1191–1197. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/32/6/p1191?a=list.
- Vozyakov, V.I. Approximate second quantization method in the quantum crystal theory. Theor. Math. Phys. 1977, 33, 136–144. [Google Scholar] [CrossRef]
- Penrose, O.; Onsager, L. Bose-Einstein condensation in liquid helium. Phys. Rev. 1956, 104, 576–584. [Google Scholar] [CrossRef]
- Andreev, A.F.; Lifshits, I.M. Quantum theory of defects in crystals. J. Exp. Theor. Phys. 1969, 29, 1107–1113. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/29/6/p1107?a=list.
- Pushkarov, D.I. Quasiparticle Theory of Defects in Solids; World Scientific: Singapore, 1991. [Google Scholar]
- Andreev, A.F. Diffusion in quantum crystals. Sov. Phys. Usp. 1976, 19, 137–168. [Google Scholar] [CrossRef]
- Andreev, A.F. Quantum crystals. Prog. Low Temp. Phys. 1982, 8, 67–131. [Google Scholar]
- Chester, G.V. Topics in the theory of liquid helium four. In Quantum Fluids and Nuclear Matter; Mahanthappa, K.T., Wesley, E.B., Eds.; Gordon and Breach: New York, NY, USA, 1969; pp. 253–296. [Google Scholar]
- Chester, G.V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 1970, 2, 256–258. [Google Scholar] [CrossRef]
- Meisel, M.W. Supersolid 4He: An overview of past searches and future possibilities. Phys. B 1992, 178, 121–128. [Google Scholar] [CrossRef]
- Leggett, A.J. Can a solid be superfluid? Phys. Rev. Lett. 1970, 25, 1543–1546. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Chan, M.H.W. Probable observation of a supersolid helium phase. Nature 2004, 427, 225–232. [Google Scholar] [CrossRef]
- Kim, E.; Chan, M.H.W. Observation of superflow in solid helium. Science 2004, 305, 1941–1945. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Chan, M.H.W. Observation of non-classical rotational inertia in solid 4He confined in porous gold. J. Low Temp. Phys. 2005, 138, 859–864. [Google Scholar] [CrossRef]
- Kim, E.; Chan, M.H. Supersolid helium at high ptressure. Phys. Rev. Lett. 2006, 97, 115302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rittner, A.S.C.; Reppy, J.D. Observation of classical rotation inertia and nonclassical supersolid signals in solid 4He below 250 mK. Phys. Rev. Lett. 2006, 97, 165300. [Google Scholar] [CrossRef] [Green Version]
- Rittner, A.S.C.; Reppy, J.D. Disorder and the superfluid state of solid 4He. Phys. Rev. Lett. 2007, 98, 175302. [Google Scholar] [CrossRef] [Green Version]
- Aoki, Y.; Graves, J.G.; Kojima, H. Oscillation frequency dependence of non-classical rotation inertia of solid 4He. Phys. Rev. Lett. 2007, 99, 015301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.C.; West, J.T.; Chan, M.H.W. Nonclassical rotational inertia in helium crystals. Phys. Rev. Lett. 2007, 99, 135302. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Takeda, S.; Shibayama, Y.; Shirahama, K. Observation of non-classical rotational inertia in bulk solid 4He. J. Low Temp. Phys. 2007, 148, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.C.; Mynard, J.D.; Chan, M.H.W. Thermal history of solid 4He under oscillations. Phys. Rev. B 2008, 77, 184513. [Google Scholar] [CrossRef] [Green Version]
- Rittner, A.S.C.; Reppy, J.D. Probing the upper limit of nonclassical rotational inertia in solid helium 4. Phys. Rev. Lett. 2008, 101, 155301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulders, N.; West, J.T.; Chan, M.H.W.; Kodituwakku, C.N.; Burns, C.A.; Lurio, L.B. Torsional oscillator and sychrotron X-ray experiments on solid 4He in aerogel. Phys. Rev. Lett. 2008, 101, 165303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, J.T.; Lin, X.; Cheng, Z.G.; Chan, M.H.W. Supersolid behavior in confined geometry. Phys. Rev. Lett. 2009, 102, 185302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitamura, A.; Yagi, M.; Kubota, M.; Shimizu, N. Probable observation of quantized vortex lines trough solid He DC rotation. J. Low Temp. Phys. 2011, 162, 492–499. [Google Scholar]
- Clark, A.C.; Liu, X.; Chan, M.H.W. Search for superfluidity in solid hydrogen. Phys. Rev. Lett. 2006, 97, 245301. [Google Scholar] [CrossRef] [Green Version]
- Mezzacapo, F.; Boninsegni, M. Local superfluidity of parahydrogen clucters. Phys. Rev. Lett. 2008, 100, 145301. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Le Roy, R.L.; Roy, P.N.; McKellar, A.R.W. Molecular superfluid: nonclassical rotations in doped para-hydrogen clusters. Phys. Rev. Lett. 2010, 105, 133401. [Google Scholar] [CrossRef]
- Kim, D.A.; Chan, M.H. Absence of supersolidity in solid helium in porous Vycor glass. Phys Rev Lett. 2012, 109, 155301. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.A.; Chan, M.H.W. Upper limit of supersolidity in solid helium. Phys. Rev. B 2014, 90, 064503. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Shin, J.; Kim, E. Frequency-dependent study of solid helium-4 contained in a rigid double-torus torsional oscillator. Phys. Rev. B 2015, 92, 144505. [Google Scholar] [CrossRef] [Green Version]
- Fear, M.J.; Walmsley, P.M.; Zneev, D.E.; Mäkinen, J.T.; Golov, A.I. No effect of steady rotation on solid 4He in a torsional oscillator. J. Low Temp. Phys. 2016, 183, 106–114. [Google Scholar] [CrossRef]
- Day, J.; Beamish, J. Low temperature shear modulus changes in solid 4He and connection to supersolidity. Nature 2007, 450, 853–856. [Google Scholar] [CrossRef]
- Corboz, P.; Pollet, L.; Prokof’ev, N.V.; Troyer, M. Binding of a 3He impurity to a screw dislocation in solid 4He. Phys. Rev. Lett. 2008, 101, 155302. [Google Scholar] [CrossRef] [Green Version]
- Bouchaud, J.P.; Biroli, G. Quantum plasticity and dislocation-induced supersolidity. Compt. Rend. Phys. 2008, 9, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Day, J.; Syshchenko, O.; Beamish, J. Intrinsic and dislocation-induced elastic behavior of solid helium. Phys. Rev. B 2009, 79, 214524. [Google Scholar] [CrossRef] [Green Version]
- Day, J.; Syshchenko, O.; Beamish, J. Non-linear elastic response in solid helium: critical velocity or strain? Phys. Rev. Lett. 2010, 104, 075302. [Google Scholar] [CrossRef] [Green Version]
- Syshchenko, O.; Day, J.; Beamish, J. Frequency dependence and dissipation in the dynamics of solid helium. Phys. Rev. Lett. 2010, 104, 195301. [Google Scholar] [CrossRef] [Green Version]
- Reppy, J.D. Nonsupersolid origin of the nonclassical rotation inertia in a bulk sample of solid 4He. Phys. Rev. Lett. 2010, 104, 255301. [Google Scholar] [CrossRef] [PubMed]
- Eyal, A.; Pelleg, O.; Embon, L.; Polturak, E. Evidence for a high temperature disorder-induced mobility in solid 4He. Phys. Rev. Lett. 2010, 105, 025301. [Google Scholar] [CrossRef] [Green Version]
- Su, J.J.; Graf, M.J.; Balatsky, A.V. A glass anomaly in the shear modulus of solid 4He. Phys. Rev. Lett. 2010, 105, 045302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, E.J.; Hunt, B.; Gadagkar, V.; Yamashita, M.; Graf, M.J.; Balatsky, A.V.; Davis, J.C. Interplay of rotational, relaxational, and shear dynamics in solid 4He. Science 2011, 332, 821–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleinikava, D.; Kuklov, A.B. The role of 3He impurities in the stress induced roughening of superclimbing dislocations in solid 4He. J. Phys. Conf. Ser. 2012, 400, 012036. [Google Scholar] [CrossRef] [Green Version]
- Mi, X.; Mueller, E.; Reppy, J.D. Study of supersolidity and shear modulus anomaly of 4He in a triple compound oscillator. J. Phys. Conf. Ser. 2012, 400, 012047. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Su, J.J.; Graf, M.J.; Reichhardt, C.; Balatsky, A.V.; Beyerlein, I. Dislocation induced anomalous softening of solid helium. Phil. Mag. 2012, 92, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Reppy, J.D.; Mi, X.; Justin, A.; Mueller, E.J. Interpreting torsional oscillator measurements: Effect of shear modulus and supersolidity. J. Low Temp. Phys. 2012, 168, 175–193. [Google Scholar] [CrossRef] [Green Version]
- Fefferman, A.D.; Rojas, X.; Haziot, A.; Balibar, S.; West, J.T.; Chan, M.H.W. 4He crystal quality and rotational response in a transparant torsional oscillator. Phys. Rev. B 2012, 85, 094103. [Google Scholar] [CrossRef] [Green Version]
- Eyal, A.; Livue, E.; Polturak, E. Observation of dislocation related interfacial friction mechanism in mobile solid 4He. J. Low Temp. Phys. 2016, 183, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K. Effect of rotation on elastic moduli of solid 4He. Phys. Rev. B 2018, 97, 054516. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Tsuiki, T.; Takahashi, D.; Choi, H.; Kono, K.; Shirahama, K.; Kim, E. Superfluid-like TO responses in rotating solid helium. Phys. Rev. B 2018, 98, 014509. [Google Scholar] [CrossRef] [Green Version]
- Zneev, D.B.; Golov, A.I. Simultaneous measurements of the torsional oscillator anomaly and thermal conductivity in solid 4He. Phys. Rev. Lett. 2011, 107, 065302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.J.; Paalanen, M.A.; Reppy, J.D. Search for superfluidity in hcp 4He. Phys. Rev. 1981, 24, 2844–2845. [Google Scholar] [CrossRef]
- Cheng, Z.G.; Beamish, J. Plastic deformation in a quantum solid: Dislocation avalanches and creep in Helium. Phys. Rev. Lett. 2018, 121, 055301. [Google Scholar] [CrossRef]
- Beamish, J. Plastic deformation and creep in solid Helium. J. Low Temp. Phys. 2019, 197, 187–207. [Google Scholar] [CrossRef]
- Saslow, W.M. Superflow in solid 4He. Phys. Rev. B. 2005, 71, 092502. [Google Scholar] [CrossRef] [Green Version]
- Galli, D.E. Bose-Einstein condensation in solid 4He. Phys. Rev. B 2005, 71, 140506. [Google Scholar] [CrossRef] [Green Version]
- Saslow, W.M.; Joland, S. Supersolid 4He likely has nearly isotropic superflow. Phys. Rev. B 2006, 73, 092505. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Ginzburg-Landau theory of a superfluid. Phys. Rev. Lett. 2006, 97, 125302. [Google Scholar] [CrossRef] [Green Version]
- Josserand, C.; Pomeau, Y.; Rica, S. Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid. Phys. Rev. Lett. 2007, 98, 195301. [Google Scholar] [CrossRef] [Green Version]
- During, G.; Josserand, C.; Pomeau, Y.; Rica, S. Theory of real supersolids. In Proceedings of Warsaw School of Statistical Physics; Warsaw University: Warsaw, Poland, 2012. [Google Scholar]
- Balibar, S.; Caupin, F. Supersolidity and disorder. J. Phys. Cond. Matter 2008, 20, 173201. [Google Scholar] [CrossRef]
- Prokof’ev, N.; Svistunov, B. Supersolid state of matter. Phys. Rev. Lett. 2005, 94, 155302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, D.E.; Reatto, L. Bose-Einstein condensation of incommensurate solid 4He. Phys. Rev. Lett 2006, 96, 165301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Vitali, E.; Graf, D.E.; Reatto, L. Zero-point vacancies in quantum solids. J. Low Temp. Phys. 2008, 153, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, R.; de Koning, M.; Vitiello, S.A. Zero-point vacancy concentration in the shadow wave function model for solid 4He. Phys. Rev. B 2009, 80, 172302. [Google Scholar] [CrossRef] [Green Version]
- Toda, R.; Gumann, P.; Kosaka, K.; Kanemoto, M.; Onoe, W.; Sasaki, Y. Simultaneous measurement of torsional oscillations and NMR of very dilute 3He in solid 4He. Phys. Rev. B 2010, 81, 214515. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Vitali, E.; Graf, D.E.; Reatto, L. Quantum dislocations: The fate of multiple vacancies in two dimensional solid 4He. J. Phys. Cond. Matt. 2010, 22, 145401. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.G.; Wettlaufer, J.S. Classical rotation inertia of solid 4He. Phys. Rev. Lett. 2005, 94, 235301. [Google Scholar] [CrossRef] [Green Version]
- Penzev, A.; Yasuta, Y.; Kubota, M. ac Vortex-dependent torsional oscillation response and onset temperature T0 in solid 4He. Phys. Rev. Lett. 2008, 101, 065301. [Google Scholar] [CrossRef] [Green Version]
- Gaudio, S.; Cappeluti, E.; Rastelli, G.; Pietronero, L. Finite-size Berezinskii-Kosterlitz-Thouless transition at grain boundaries in solid 4He and the role of 3He impurities. Phys. Rev. Lett. 2008, 101, 075301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappeluti, E.; Rastelli, G.; Gaudio, S.; Pietronero, L. Surface instability and isotopic impurities in quantum solids. Phys. Rev. B 2008, 77, 054301. [Google Scholar] [CrossRef]
- Shirahama, K.; Yamamoto, K.; Shibayama, Y. Superfluidity of 4He confined in nano-porous media. J. Low Temp. Phys. 2008, 34, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Shibayama, Y.; Shirahama, K. Thermodynamic evidence for nanoscale Bose-Einstein condensation in 4He confined in nanoporous media. Phys. Rev. Lett. 2008, 100, 195301. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Shibayama, Y.; Shirahama, K. Liquid-solid transition and phase diagram of 4He confined in nanoporous glass. J. Phys. Soc. Jpn. 2008, 77, 013601. [Google Scholar] [CrossRef] [Green Version]
- Andreev, A.F. Supersolidity of glasses. JETP Lett. 2007, 85, 585–587. [Google Scholar] [CrossRef]
- Grigor’ev, V.N.; Maidanov, V.A.; Rubanskii, V.Y.; Rubets, S.P.; Rudavskii, E.Y.; Ryabalko, A.S.; Syrnikov, E.V.; Tikhii, V.A. Observation of a glassy phase of 4He in the region of supersolid effects. Phys. Rev. B 2007, 76, 224524. [Google Scholar] [CrossRef]
- Graf, M.J.; Balatsky, A.V.; Nussinov, Z.; Grigorenko, I.; Trugman, S.A. Torsional oscillators and the entropy dilemma of putative supersolid 4He. J. Phys. Conf. Ser. 2009, 150, 032025. [Google Scholar] [CrossRef]
- Hunt, B.; Pratt, E.; Gadagkar, V.; Yamashita, M.; Balatsky, A.V.; Davis, J.C. Evidence for superglass state in solid 4He. Science 2009, 324, 632–636. [Google Scholar] [CrossRef]
- Su, J.J.; Graf, M.J.; Balatsky, A.V. A glassy contribution to the heat capacity of hcp 4He solids. J. Low Temp. Phys. 2010, 159, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Birshenko, A.P.; Mikhin, N.P.; Rudavskii, E.Y.; Vekhov, Y.O. NMR study of disordered inclusions in the quenched solid helium. J. Low Temp. Phys. 2012, 169, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Andreev, A.F. Tunnelling defect nanoclusters in hcp 4He crystals: Alternative to supersolidity. J. Low Temp. Phys. 2012, 168, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Balckburn, E.; Goodkind, J.M.; Sinha, S.K.; Hudis, J.; Broholm, C.; van Duin, J.; Frost, C.D.; Kirichek, O.; Down, R.B.E. Absence of low temperature anomaly in the Debye-Waller factor of solid 4He. Phys. Rev. B 2007, 76, 024523. [Google Scholar] [CrossRef] [Green Version]
- Kirichek, O. Search for supersolid 4He in neutron scattering experiments at ISIS. J. Phys. Conf. Ser. 2009, 150, 032042. [Google Scholar] [CrossRef]
- Diallo, S.O.; Pearce, J.V.; Azuah, R.T.; Kirichek, O.; Taylor, J.W.; Glyde, H.R. Bose-Einstein condensation in solid 4He. Phys. Rev. Lett. 2007, 98, 205301. [Google Scholar] [CrossRef] [Green Version]
- Diallo, S.O.; Azuah, R.T.; Kirichek, O.; Taylor, J.W.; Glyde, H.R. Limits on Bose-Einstein condensation in confined solid 4He. Phys. Rev. B 2009, 80, 060504. [Google Scholar] [CrossRef] [Green Version]
- Bossy, J.; Ollivier, J.; Schober, H.; Glyde, H.R. Excitations of amorphous solid helium. Phys. Rev. B 2012, 86, 224503. [Google Scholar] [CrossRef] [Green Version]
- Burns, C.A.; Mulders, N.; Lurio, L.; Chan, M.H.W.; Said, A.; Kodituwakku, C.N.; Platzman, P.M. X-ray studies of low-temperature solid 4He. Phys. Rev. B 2008, 78, 224305. [Google Scholar] [CrossRef]
- Polturak, E.; Markovich, T.; Bossy, J.; Farhi, E. Observation of a new excitation in bcc 4He by inelastic neutron scattering. Phys. B 2003, 329, 371–374. [Google Scholar] [CrossRef]
- Pelleg, O.; Shay, M.; Lipson, S.G.; Polturak, E.; Bossy, J.; Marmeggi, J.C.; Kentaro, H.; Farhi, E.; Stunault, A. Observation of macroscopic structural fluctuations in bcc solid 4He. Phys. Rev. B 2006, 73, 024301. [Google Scholar] [CrossRef] [Green Version]
- Balckburn, E.; Sinha, S.K.; Broholm, C.; Copley, J.R.D.; Erwin, R.W.; Goodkind, J.M. Roton-like mode in solid 4He. Pramana J. Phys. 2008, 71, 673–678. [Google Scholar]
- Galli, D.E.; Reatto, L. Solid 4He and the superfluid phase: from theoretical description to the discovery of a new state of matter? J. Phys. Soc. Jpn. 2008, 77, 111010. [Google Scholar] [CrossRef] [Green Version]
- Day, J.; Beamish, J. Pressure-driven flow of solid helium. Phys. Rev. Lett. 2006, 96, 105304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rittner, A.S.C.; Choi, W.; Mueller, E.J.; Reppy, J.D. Absence of pressure driven superfluid flow at low frequency. Phys. Rev. B 2009, 80, 224516. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.W.; Hallock, R.B. Observation of unusual mass transport in solid hcp 4He. Phys. Rev. Lett. 2008, 100, 235301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, M.W.; Hallock, R.B. Observation of mass transport through solid 4He. Phys. Rev. B 2009, 79, 224302. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.W.; Hallock, R.B. Max flux and solid growth in solid 4He: 60 mK–700 mK. Phys. Rev. Lett. 2010, 105, 145301. [Google Scholar] [CrossRef] [Green Version]
- Vekhov, Y.; Hallock, R.B. Dissipative superfluid mass flux through solid 4He. Phys. Rev. B 2014, 90, 134511. [Google Scholar] [CrossRef] [Green Version]
- Vekhov, Y.; Mullin, W.J.; Hallock, R.B. Universal temperature dependence, flux extinction, and the role of 3He impurities in superfluid mass transport through solid 4He. Phys. Rev. Lett. 2014, 113, 035302. [Google Scholar] [CrossRef]
- Vekhov, Y.; Hallock, R.B. Mass superflux in solid helium: the role of 3He impurities. Phys. Rev. B 2015, 92, 104509. [Google Scholar] [CrossRef] [Green Version]
- Vekhov, Y.; Hallock, R.B. Flux bottlenecks in the mass superflux in solid helium. Phys. Rev. B 2015, 91, 180506. [Google Scholar] [CrossRef] [Green Version]
- Hallock, R.B. Experiments with solid 4He. Physica A 2015, 389, 2894–2897. [Google Scholar] [CrossRef]
- Hallock, R.B. Mass flux experiments in solid 4He: Some history, recent work and the current status. J. Low Temp. Phys. 2019, 197, 167–186. [Google Scholar] [CrossRef]
- Shin, J.; Kim, D.Y.; Haziot, A.; Chan, M.H.W. Superfluidlike mass flow through 8 μm thick solid 4He samples. Phys. Rev. Lett. 2017, 118, 235301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Chan, M.H.W. Mass transport through dislocation network in solid 4He. Phys. Rev. B 2019, 99, 140502. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.G.; Beamish, J.; Fefferman, A.D.; Souris, F.; Balibar, S.; Dauvois, V. Helium mass flow through a solid-superfluid-solid junction. Phys. Rev. Lett. 2015, 114, 165301. [Google Scholar] [CrossRef]
- Cheng, Z.G.; Beamish, J. Compression-driven mass flow in bulk solid 4He. Phys. Rev. Lett. 2016, 117, 025301. [Google Scholar] [CrossRef]
- Shin, J.; Chan, M.H.W. Extinction and recovery of mass flow through solid 4He samples. Phys. Rev. B 2020, 101, 014507. [Google Scholar]
- Shevchenko, S.I. On one-dimensional superfluidity in Bose crystals. Low Temp. Phys. 1987, 13, 115–131. [Google Scholar]
- Shevchenko, S.I. On quasi-one-dimensional superfluidity in Bose systems. Low Temp. Phys. 1988, 14, 1011–1027. [Google Scholar]
- Fil, D.V.; Shevchenko, S.I. Relaxation of superflow in a network: Application to the dislocation model of supersolidity of helium crystals. Phys. Rev. B 2009, 80, 100501. [Google Scholar] [CrossRef] [Green Version]
- Pollet, L.; Boninsegni, M.; Kuklov, A.B.; Prokof’ev, N.V.; Svistunov, B.V.; Troyer, M. Local stress and superfluid properties of solid 4He. Phys. Rev. Lett. 2008, 101, 097202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söyler, S.G.; Kuklov, A.B.; Pollet, L.; Prokof’ev, N.V.; Svustunov, B.V. Underlying mechanism for the giant isochoric compressibility of solid 4He: Superclimb of dislocations. Phys. Rev. Lett. 2009, 103, 175301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuklov, A.B.; Pollet, L.; Prokof’ev, N.V.; Svustunov, B.V. Quantum plasticity and supersolid response in helium-4. Phys. Rev. B 2014, 90, 184508. [Google Scholar] [CrossRef] [Green Version]
- Kuklov, A.B. Plasticity induced superclimb in solid helium-4: Direct abd inverse effects. Phys. Rev. B 2019, 100, 014513. [Google Scholar] [CrossRef] [Green Version]
- Kuklov, A.B. Giant isochoric compressibility of solid 4He: The bistability of superclimbing dislocations. Phys. Rev. B 2015, 92, 134504. [Google Scholar] [CrossRef] [Green Version]
- Kuklov, A.B.; Prokof’ev, N.V.; Svistunov, B.V. Disorder-induced quantum properties of solid 4He. arXiv 2019, arXiv:1912.03704. [Google Scholar]
- Cheng, Z.G.; Beamish, J. Mass flow through solid 3He in the bcc phase. Phys. Rev. Lett. 2018, 121, 225304. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Bernu, B. Ring exchanges and the supersolid phase of 4He. Phys. Rev. Lett. 2004, 93, 155303. [Google Scholar] [CrossRef] [Green Version]
- Bernu, B.; Ceperley, D.M. Path integral calculations of exchange in solid 4He. J. Phys. Chem. Solids 2005, 66, 1462–1466. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.K.; Ceperley, D.M. Off-diagonal long-range order in solid 4He. Phys. Rev. Lett. 2006, 96, 105302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khairallah, S.A.; Ceperley, D.M. Superfluidity of dense 4He in Vycor. Phys. Rev. Lett. 2005, 95, 185301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boninsegni, M.; Prokof’ev, N.; Svistunov, B. Superglass phase of 4He. Phys. Rev. Lett. 2006, 96, 105301. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, C.; Boronat, J. Superfluidity versus localization in bulk 4He at zero temperature. Phys. Rev. B 2006, 73, 224515. [Google Scholar] [CrossRef] [Green Version]
- Boninsegni, M.; Kuklov, A.B.; Pollet, L.; Prokof’ev, N.V.; Svistunov, B.V.; Troyer, M. Fate of vacancy-induced supersolidity in 4He. Phy. Rev. Lett. 2006, 97, 080401. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.N.; Pollet, L.; Troyer, M.; Zhang, F.C. A classical picture of the role of vacancies and interstitials in helium-4. J. Low Temp. Phys. 2008, 152, 156–163. [Google Scholar] [CrossRef]
- Pollet, L.; Boninsegni, A.V.; Kuklov, A.B.; Prokof’ev, N.V.; Svistunov, B.V.; Troyer, M. Superfluidity of grain boundaries in solid 4He. Phys. Rev. Lett. 2007, 98, 135301. [Google Scholar] [CrossRef] [Green Version]
- Boninsegni, M.; Kuklov, A.B.; Pollet, L.; Prokof’ev, N.V.; Svistunov, B.V.; Troyer, M. Luttinger liquid in the core of screw dislocation in helium-4. Phys. Rev. Lett. 2007, 99, 035301. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, C.; Astrakharchik, G.E.; Casulleras, J.; Boronat, J. Ground-state properties and superfluidity of two- and quasi-two-dimensional solid 4He. J. Phys. Condens. Matter 2010, 22, 165402. [Google Scholar] [CrossRef] [Green Version]
- Boninsegni, M. On the existence of supersolid 4He monolayer films. J. Low Temp. Phys. 2011, 165, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Rota, R.; Boronat, J. Path integral Monte Carlo calculations of momentum distribution in solid 4He. J. Low Temp. Phys. 2011, 162, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Rota, R.; Boronat, J. Microscopic approach to the bcc phase of solid 4He. Mol. Phys. 2011, 109, 2963–2968. [Google Scholar] [CrossRef]
- Yukalov, V.I. Remarks on quasiaverages. Theor. Math. Phys. 1976, 26, 274–281. [Google Scholar] [CrossRef]
- Yukalov, V.I. Model of a hybrid crystal. Theor. Math. Phys. 1976, 28, 652–660. [Google Scholar] [CrossRef]
- Yukalov, V.I. Quantum crystal with jumps of particles. Physica A 1977, 89, 363–372. [Google Scholar] [CrossRef]
- Yukalov, V.I. A method to consider metastable states. Phys. Lett. A 1981, 81, 433–435. [Google Scholar] [CrossRef]
- Yukalov, V.I. Theory of melting and crystallization. Phys. Rev. B 1985, 32, 436–446. [Google Scholar] [CrossRef]
- Yukalov, V.I. Properties of solids with pores and cracks. Int. J. Mod. Phys. B 1989, 3, 311–326. [Google Scholar] [CrossRef]
- Yukalov, V.I. Possibility of turbulent crystals. Int. J. Mod. Phys. B 2001, 17, 2433–2453. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.C. Physics of High-Tc Superconductors; Academic Press: Boston, MA, USA, 1989. [Google Scholar]
- Benedek, G.; Müller, K.A. (Eds.) Phase Separation in Cuprate Superconductors; World Scientific: Singapore, 1992. [Google Scholar]
- Sigmund, E.; Müller, K.A. Phase Separation in Cuprate Superconductors; Springer: Berlin, Germany, 1994. [Google Scholar]
- Kivelson, S.A.; Bindloss, I.P.; Fradkin, E.; Oganesyan, V.; Tranquada, J.M.; Kapitulnik, A.; Howald, C. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 2003, 75, 1201–1242. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I.; Yukalova, E.P. Mesoscopic phase separation in anisotropic superconductors. Phys. Rev. B 2004, 70, 224516. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A. Superstripes in the low energy physics of complex quantum matter at the nanoscale. J. Supercond. Nov. Magn. 2015, 28, 1227–1229. [Google Scholar] [CrossRef] [Green Version]
- Brookeman, J.; Rigamonti, A. Pretrunsitional clusters and heterophase fluctuations at first-order phase transitions in crystals. Phys. Rev. B 1981, 24, 4925–4930. [Google Scholar] [CrossRef]
- Rigamonti, A. NMR-NQR studies of structural phase transitions. Adv. Phys. 1984, 33, 115–191. [Google Scholar] [CrossRef]
- Gordon, A.; Genossar, J. Precursor order clusters at ferroelectric phase transitions. Phys. B 1984, 125, 53–62. [Google Scholar] [CrossRef]
- Gordon, A. Heterophase fluctuations in ferroelectrics. J. Phys. C 1987, 20, 111–114. [Google Scholar] [CrossRef]
- Yukalov, V.I. Phase transitions and heterophase fluctuations. Phys. Rep. 1991, 208, 395–489. [Google Scholar] [CrossRef]
- Yukalov, V.I. Mesoscopic phase fluctuations: General phenomenon in condensed matter. Int. J. Mod. Phys. B 2003, 17, 2333–2358. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I. Systems with symmetry breaking and restoration. Symmetry 2010, 2, 40–68. [Google Scholar] [CrossRef]
- Yukalov, V.I. Basics of Bose-Einstein condensation. Phys. Part. Nucl. 2011, 42, 460–513. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I. Theory of cold atoms: Basics of quantum statistics. Laser Phys. 2013, 23, 062001. [Google Scholar] [CrossRef] [Green Version]
- Yukalov, V.I. Theory of cold atoms: Bose-Einstein statistics. Laser Phys. 2016, 26, 062001. [Google Scholar] [CrossRef] [Green Version]
- Griesmaier, A. Generation of a dipolar Bose–Einstein condensate. J. Phys. B 2007, 40, R91. [Google Scholar] [CrossRef]
- Baranov, M.A. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 2008, 464, 71–111. [Google Scholar] [CrossRef]
- Baranov, M.A.; Dalmonte, M.; Pupillo, G.; Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 2012, 112, 5012–5061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadway, B.; Yan, B. Strongly interacting ultracold polar molecules. J. Phys. B 2016, 49, 152002. [Google Scholar] [CrossRef]
- Stamper-Kurn, D.M.; Ueda, M. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 2013, 85, 1191–1244. [Google Scholar] [CrossRef] [Green Version]
- Ueda, M. Fundamentals and New Frontiers of Bose–Einstein Condensation; World Scientific: Singapore, 2010. [Google Scholar]
- Yukalov, V.I. Dipolar and spinor bosonic systems. Laser Phys. 2018, 28, 053001. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.K.; Li, Y.; Petrov, D.S.; Shlyapnikov, G.V. Stable dilute supersolid of two-dimensional dipolar bosons. Phys. Rev. Lett. 2015, 115, 075303. [Google Scholar] [CrossRef] [Green Version]
- Boninsegni, M. Supersolid phases of cold atom assemblies. J. Low Temp. Phys. 2012, 168, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Henkel, N.; Nath, R.; Pohl, T. Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates. Phys. Rev. Lett. 2010, 104, 195302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinti, F.; Jain, P.; Boninsegni, M.; Michel, A.; Zoller, P.; Pupillo, G. Supersolid droplet crystal in a dilute-blockaded gas. Phys. Rev. Lett. 2010, 105, 135301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Maucher, F.; Pohl, T. Supersoldity around a critical point in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 2019, 123, 015301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinti, F.; Boninsegni, M. Classical and quantum filaments in the ground state of trapped dipolar Bose gases. Phys. Rev. A 2017, 96, 013627. [Google Scholar] [CrossRef] [Green Version]
- Kora, Y.; Boninsegni, M. Patterned supersolids in dipolar Bose systems. J. Low. Temp. Phys. 2019, 197, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Cinti, F.; Boninsegni, M. Absence of superfluidity in 2D dipolar Bose striped crystals. J. Low Temp. Phys. 2019, 196, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Seydi, I.; Abedinpour, S.H.; Zillich, R.E.; Asgari, R.; Tanatar, B. Rotons and Bose condensation in Rydberg-dressed Bose gases. Phys. Rev. A 2020, 101, 013628. [Google Scholar] [CrossRef] [Green Version]
- Btcher, F.; Schmidt, J.N.; Wenzel, M.; Hertkorn, J.; Guo, M.; Langen, T.; Pfau, T. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 2019, 9, 011051. [Google Scholar]
- Chomaz, L.; Petter, D.; Ilzhöfer, P.; Natale, G.; Trautmann, A.; Politi, C.; Durastante, G.; Van Bijnen, R.M.; Patscheider, A.; Sohmen, M.; et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 2019, 9, 021012. [Google Scholar] [CrossRef] [Green Version]
- Tanzi, L.; Roccuzzo, S.M.; Lucioni, E.; Fama, F.; Fioretti, A.; Gabbanini, C.; Modugno, G.; Recatti, A.; Stringari, S. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 2019, 574, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Böttcher, F.; Herkorn, J.; Schmidt, J.N.; Wenzel, M.; Bichler, H.P.; Langer, T.; Pfau, T. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 2019, 574, 386–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yukalov, V.I. Saga of Superfluid Solids. Physics 2020, 2, 49-66. https://doi.org/10.3390/physics2010006
Yukalov VI. Saga of Superfluid Solids. Physics. 2020; 2(1):49-66. https://doi.org/10.3390/physics2010006
Chicago/Turabian StyleYukalov, Vyacheslav I. 2020. "Saga of Superfluid Solids" Physics 2, no. 1: 49-66. https://doi.org/10.3390/physics2010006
APA StyleYukalov, V. I. (2020). Saga of Superfluid Solids. Physics, 2(1), 49-66. https://doi.org/10.3390/physics2010006