Integral Balance Methods for Stokes’ First Equation Described by the Left Generalized Fractional Derivative
Abstract
:1. Introduction
2. Fractional Derivative News
3. Preliminary Results for the Integral Balance Methods
4. Approximate Solutions of Stokes’ First Equation
- for ,
- for .
4.1. Heat Integral Balance Method
4.2. Double Integral Method
5. Exponent of the Approximate Solution of the Stokes’ First Equation
6. Approximate Solution of the Stokes’ First Equation
7. Physical Discussion
8. Optimization of the Residual Function
9. Conclusions
Funding
Conflicts of Interest
References
- Fetecau, C.; Fetecau, C. The Rayleigh–Stokes problem for heated second grade fluids. Int. J. -Non-Linear Mech. 2002, 37, 1011–1015. [Google Scholar] [CrossRef]
- Zierep, J. Similarity Laws and Modeling; Marcel Dekker Inc.: New York, NY, USA, 1971. [Google Scholar]
- Zierep, J. Das Rayleigh–Stokes Problem fur die Ecke. Acta Mech. 1979, 34, 161–165. [Google Scholar] [CrossRef]
- Bandelli, R.; Rajagopal, K.R. Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non-Linear Mech. 1995, 30, 817–839. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Atangana, A. Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. Chaos Solitons Fractals 2018, 111, 119–127. [Google Scholar] [CrossRef]
- Sene, N. Exponential form for Lyapunov function and stability analysis of the fractional differential equations. J. Math. Comput. Sci. 2018, 18, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Masood Khan The Rayleigh–Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model. Nonlinear Anal. Real World Appl. 2009, 10, 3190–3195. [CrossRef]
- Shen, F.; Tana, W.; Zhao, Y.; Masuokad, T. The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Realworld Appl. 2006, 7, 1072–1080. [Google Scholar] [CrossRef]
- Sene, N. Stokes’ first problem for heated flat plate with Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 68–75. [Google Scholar] [CrossRef]
- Chen, C.-M.; Liu, F.; Turner, I.; Anh, V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid. Comput. Math. Appl. 2011, 62, 971–986. [Google Scholar] [CrossRef]
- Srinivasan, S.; Rajagopal, K.R. Study of a variant of Stokes’ first and second problems for fluids with pressure dependent viscosities. Int. J. Eng. Sci. 2009, 47, 1357–1366. [Google Scholar] [CrossRef]
- Zhuang, P.-H.; Liu, Q.-X. Numerical method of Rayleigh–Stokes problem for heated generalized second grade fluid with fractional derivative. Appl. Math. Mech. 2009, 30, 1533–1546. [Google Scholar] [CrossRef]
- Yu, D.N.; He, J.H.; Garcıa, A.G. Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators. J. Low Freq. Noise Vib. Act. Control 2018. [Google Scholar] [CrossRef]
- Anjum, N.; He, J.H. Laplace transform: Making the variational iteration method easier. Appl. Math. Lett. 2019, 92, 134–138. [Google Scholar] [CrossRef]
- Hristov, J. A transient flow of a non-Newtonian fluid modelled by a mixed time-space derivative: An improved integral-balance approach. Math. Methods Eng. 2019, 153–174. [Google Scholar] [CrossRef]
- Myers, T.G. Optimal exponent heat balance and refined integral methods applied to Stefan problems. Int. J. Heat Mass Transf. 2010, 53, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.L.; Myers, T.G. Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. Int. J. Heat Mass Transf. 2010, 53, 3540–3551. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. Fourth-order fractional diffusion model of thermal grooving: Integral approach to approximate closed form solution of the Mullins model. Math. Model. Nat. Phenom. 2018, 13, 6. [Google Scholar] [CrossRef]
- Fahd, J.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 2018, 2, 88–98. [Google Scholar]
- Priyadharsini, S. Stability of fractional neutral and integrodifferential systems. J. Fract. Calc. Appl. 2016, 7, 87–102. [Google Scholar]
- Owolabi, K.M.; Hammouch, Z. Mathematical modeling and analysis of two-variable system with noninteger-order derivative. Chaos 2019, 1, 013145. [Google Scholar] [CrossRef]
- Sene, N. Analytical solutions of Hristov diffusion equations with non-singular fractional derivatives. Chaos 2019, 29, 023112. [Google Scholar] [CrossRef] [PubMed]
- Abdeljawad, T.; Mert, R.; Peterson, A. Sturm Liouville equations in the frame of fractional operators with exponential kernels and their discrete versions. Quest. Math. 2018, 1–19. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Nagy, A.M. Finite-time stability of linear Caputo–Katugampola fractional-order time delay systems. Asian J. Control. 2019, 21, 1–10. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Li, X.X.; Tian, D.; He, C.H.; He, J.H. A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electrochim. Acta 2019, 296, 491–493. [Google Scholar] [CrossRef]
- Wang, Q.L.; Shi, X.Y.; He, J.H.; Li, Z.B. Fractal calculus and its application to explanation of biomechanism of polar bear hairs. Fractals 2018, 26, 1850086. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Q. Fractal derivative model for tsunami travelling. Fractals 2019, 27, 1950017. [Google Scholar] [CrossRef]
- Teipel, I. The Impulsive Motion of a Flat Plate in a Viscoelastic Fluid. Acta Mechanica 1981, 39, 277–279. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sene, N. Integral Balance Methods for Stokes’ First Equation Described by the Left Generalized Fractional Derivative. Physics 2019, 1, 154-166. https://doi.org/10.3390/physics1010015
Sene N. Integral Balance Methods for Stokes’ First Equation Described by the Left Generalized Fractional Derivative. Physics. 2019; 1(1):154-166. https://doi.org/10.3390/physics1010015
Chicago/Turabian StyleSene, Ndolane. 2019. "Integral Balance Methods for Stokes’ First Equation Described by the Left Generalized Fractional Derivative" Physics 1, no. 1: 154-166. https://doi.org/10.3390/physics1010015
APA StyleSene, N. (2019). Integral Balance Methods for Stokes’ First Equation Described by the Left Generalized Fractional Derivative. Physics, 1(1), 154-166. https://doi.org/10.3390/physics1010015