# Construction and Usefulness Verification of Modeling Method of Subsurface Soil Layers for Numerical Analysis of Urban Area Ground Motion

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Survey

## 3. Method of Constructing Analysis Model for Site Surface Layer

#### 3.1. Three-Dimensional Artificial Ground Model

#### 3.2. Analysis Model of Site Surface Layer

## 4. Example of Automatic Construction of Analytical Model of Site Surface Layer

## 5. Example of Earthquake Disaster Estimation Using Analysis Model of Site Surface Layer

#### 5.1. Conditions of Calculation

#### 5.2. Details of Analysis Models of Site Surface Layer

#### 5.3. Results of Physics-Based Simulations

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Uchiyama, Y.; Midorikawa, S. Evaluation of Amplification Factor of Site Classes Based on Strong Motion Records and Nonlinear Response Analysis. J. Struct. Constr. Eng. AIJ
**2003**, 571, 87–93, (In Japanese with English Abstract). [Google Scholar] [CrossRef][Green Version] - Yamaguchi, N.; Yamazaki, F. Fragility Curves for Buildings in Japan Based on Damage Surveys after the 1995 Kobe Earthquake. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zeland, 30 January–4 February 2000; p. 2451. [Google Scholar]
- Cabinet Office, Government of Japan. Investigation Commission of Huge Earthquakes at Nankai-Trough; Second Reports; Government of Japan: Tokyo, Japan, 2012. (In Japanese) [Google Scholar]
- Director General, Cabinet Office, Government of Japan. Lists of Assumed Damage and Outline of Damage Estimation Methods for Huge Earthquake at Nankai-Trough; Government of Japan: Tokyo, Japan, 2019. (In Japanese) [Google Scholar]
- Ichimura, T.; Hori, M.; Terada, K.; Yamakawa, T. On Integrated Earthquake Simulator Prototype: Combination of Numerical Simulation and Geographical Information System. Struct. Eng. Earthq. Eng. JSCE
**2005**, 22, 233s–243s. [Google Scholar] [CrossRef][Green Version] - Fujita, K.; Ichimura, T.; Hori, M.; Wijerathne, M.L.L.; Tanaka, S. Basic Study on High Resolution Seismic Disaster Estimation of Cities under Multiple Earthquake Hazard Scenarios with High Performance Computing. J. JSCE
**2013**, 69, I_415–I_424, (In Japanese with English Abstract). [Google Scholar] [CrossRef][Green Version] - Motoyama, H.; Iiyama, K.; Kaneda, Y.; Shiraki, W.; Fujisawa, K.; Hori, M. Construction and Application of Robust Modeling Method of Subsurface Soil Layers for Numerical Analysis of Urban Area Ground Motion Distribution. J. JSCE
**2020**, 76, I_543–I_552, (In Japanese with English Abstract). [Google Scholar] [CrossRef] - Aoi, S.; Iwata, T.; Irikura, K.; Sanchez-Sesma, F.J. Waveform Inversion for Determining the Boundary Shape of a Basin Structure. Bull. Seismol. Soc. Am.
**1995**, 85, 1445–1455. [Google Scholar] - Brown, L.T.; Boore, D.M.; Stokoe, K.H., II. Comparison of Shear-Wave Slowness Profiles at 10 Strong-Motion Sites from Noninvasive SASW Measurements and Measurements Made in Boreholes. Bull. Seismol. Soc. Am.
**2002**, 92, 3116–3133. [Google Scholar] [CrossRef] - Suzuki, Y.; Iiyama, K.; Morikawa, H.; Sakai, K.; Araki, G. New Method to Estimate Bedrock Shape of Small-Scale Basin Using Modal Properties of Sediment. Soil Dynam. Earthq. Eng.
**2021**, 149, 106882. [Google Scholar] [CrossRef] - Tateishi, A. A Study on Seismic Analysis Methods in The Cross Section of Underground Structures Using Static Finite Element Method. Struct. Eng. Earthq. Eng JSCE
**2005**, 22, 41s–53s. [Google Scholar] [CrossRef][Green Version] - Varga, M.; Schaaf, A.; Wellmann, F. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geosci. Model Dev.
**2019**, 12, 1–32. [Google Scholar] [CrossRef][Green Version] - Shiono, K.; Wadatsumi, K.; Masumoto, S. Numerical Determination of the Optimal Bedding Plane—A New Griding Algorithm for Geological Data Including Inequality and Dip Information—Japan Society of Geoinformatics. J-STAJE
**1987**, 12, 299–328, (In Japanese with English Abstract). [Google Scholar] - Koike, K.; Ohmi, M. Consideration on Interpolation Methods to Characterize a Subsurface Structure from Irregularly Spaced Data. Geoinformatics
**1995**, 6, 133–146, (In Japanese with English Abstract). [Google Scholar] [CrossRef][Green Version] - Ichimura, T.; Fujita, K.; Quinay, P.E.B.; Wirerathne, M.L.L.; Hori, M.; Tanaka, S.; Sizawa, Y.; Kobayashi, H.; Minami, K. Implicit Nonlinear Wave Simulation with 1.08T DOF and 0.270T Unstructured Finite Elements to Enhance Comprehensive Earthquake Simulation. In Proceedings of the SC15: International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX, USA, 15–20 November 2015. [Google Scholar]
- Yang, F.; Ichimura, T.; Hori, M. Earthquake Simulation in Virtual Metropolis Using Strong Motion Simulator and Geographic Information System. J. Appl. Mech.
**2002**, 5, 527–534. [Google Scholar] [CrossRef][Green Version] - Otani, H.; Chen, J.; Hori, M. Automatic Combination of the 3D Shapes and the Attributes of Buildings in Different GIS Data. J. JSCE
**2014**, 70, I_631–I_639, (In Japanese with English Abstract). [Google Scholar] [CrossRef][Green Version] - Otani, H.; Chen, J.; Hori, M. A Template-Based Floor Shape Recognition Applied to 3D Building Shapes of GIS Data. J. JSCE
**2014**, 70, I_1124–I_1131, (In Japanese with English Abstract). [Google Scholar] [CrossRef][Green Version] - Yoshida, N. Seismic Ground Response Analysis; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Assumed Damage of Earthquake and Tsunami in Kagawa Prefecture. Available online: https://www.pref.kagawa.lg.jp/kikikanri/jishin-tunami/higaisotei/wpttgd150612134723.html (accessed on 31 December 2012). (In Japanese).
- Japan Meteorological Agency. Available online: https://www.jma.go.jp/jma/en/Activities/inttable.html (accessed on 22 April 2022).
- Fujita, R.; Yoshida, H.; Hori, M.; Wijerathne, M.L.L. Evacuation Simulation Regarding Building Damage Caused by Earthquake. J. JSCE
**2015**, 71, I_643–I_654, (In Japanese with English Abstract). [Google Scholar] [CrossRef][Green Version] - Geospatial Information Center. Available online: https://www.geospatial.jp/ckan/dataset/1204 (accessed on 31 December 2012). (In Japanese).

**Figure 4.**Locations of given input motions and acceleration response spectra at each location. (

**A**) Locations of input motions at engineering bedrock. (

**B**) Acceleration response spectra of input motions.

Soil Classification | Unit Weight (kN/m ^{3}) | Reference Strain | Maximum Damping Ratio |
---|---|---|---|

Sandy soil | 18.0 | 0.000432 | 0.262 |

Cohesive soil | 17.5 | 0.00106 | 0.285 |

Gravel soil | 21.0 | 0.000432 | 0.262 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Motoyama, H.; Hori, M. Construction and Usefulness Verification of Modeling Method of Subsurface Soil Layers for Numerical Analysis of Urban Area Ground Motion. *GeoHazards* **2022**, *3*, 242-251.
https://doi.org/10.3390/geohazards3020013

**AMA Style**

Motoyama H, Hori M. Construction and Usefulness Verification of Modeling Method of Subsurface Soil Layers for Numerical Analysis of Urban Area Ground Motion. *GeoHazards*. 2022; 3(2):242-251.
https://doi.org/10.3390/geohazards3020013

**Chicago/Turabian Style**

Motoyama, Hiroki, and Muneo Hori. 2022. "Construction and Usefulness Verification of Modeling Method of Subsurface Soil Layers for Numerical Analysis of Urban Area Ground Motion" *GeoHazards* 3, no. 2: 242-251.
https://doi.org/10.3390/geohazards3020013