Adsorption Kinetics and Pollutant Capture in Aqueous Media Using Biochar from Pyrolyzed Fique Pellets
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of Raw Fique
2.2. Synthesis of Pyrolyzed Pellets
2.3. Characterization of Pyrolyzed Pellets
2.4. Adsorption Tests
3. Results and Discussion
3.1. Characterization of Pyrolized Pellets
3.1.1. Functional Groups
3.1.2. Morphology and Surface Area
3.1.3. Ph and Cation Exchange Capacity (CEC)
3.2. Methylene Blue Test
3.2.1. Adsorption Capacity
3.2.2. Adsorption Kinetic Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Nwankwo, C.E.I.; Okeke, E.S.; Umeoguaju, F.U.; Ejeromedoghene, O.; Adedipe, D.T.; Ezeorba, T.P.C. Addressing emerging contaminants in agriculture affecting plant–soil interaction: A review on bio-based and nano-enhanced strategies for soil health and global food security (GFS). Discov. Toxicol. 2025, 2, 4. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bioremediation and Biotechnology; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Duarte, J.A.P.; Ribeiro, A.K.N.; de Carvalho, P.; Bortolini, J.C.; Ostroski, I.C. Emerging contaminants in the aquatic environment: Phytoplankton structure in the presence of sulfamethoxazole and diclofenac. Environ. Sci. Pollut. Res. 2023, 30, 46604–46617. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-R.; van der Heijden, M.G.A.; Riedo, J.; Sanz-Lazaro, C.; Eldridge, D.J.; Bastida, F.; Moreno-Jiménez, E.; Zhou, X.Q.; Hu, H.W.; He, J.Z.; et al. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nat. Commun. 2023, 14, 1706. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.C.O.; Rocha, B.A.; Adeyemi, J.A.; Nadal, M.; Domingo, J.L.; Barbosa, F. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. Sci. Total Environ. 2022, 848, 157774. [Google Scholar] [CrossRef]
- Fernández, I.C.; Koplow-Villavicencio, T.; Montoya-Tangarife, C. Urban environmental inequalities in Latin America: A scoping review. World Dev. Sustain. 2023, 2, 100055. [Google Scholar] [CrossRef]
- El-taweel, R.M.; Mohamed, N.; Alrefaey, K.A.; Husien, S.; Abdel-Aziz, A.B.; Salim, A.I.; Mostafa, N.G.; Said, L.A.; Fahim, I.S.; Radwan, A.G. A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN. Curr. Res. Green Sustain. Chem. 2023, 6, 100358. [Google Scholar] [CrossRef]
- Tahraoui, H.; Toumi, S.; Boudoukhani, M.; Touzout, N.; Sid, A.N.E.H.; Amrane, A.; Belhadj, A.E.; Hadjadj, M.; Laichi, Y.; Aboumustapha, M.; et al. Evaluating the Effectiveness of Coagulation–Flocculation Treatment Using Aluminum Sulfate on a Polluted Surface Water Source: A Year-Long Study. Water 2024, 16, 400. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced oxidation processes for water and wastewater treatment—Guidance for systematic future research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Pet, I.; Sanad, M.N.; Farouz, M.; ElFaham, M.M.; El-Hussein, A.; El-Sadek, M.S.A.; Althobiti, R.A.; Ioanid, A. Review: Recent Developments in the Implementation of Activated Carbon as Heavy Metal Removal Management. Water Conserv. Sci. Eng. 2024, 9, 62. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Siipola, V.; Pflugmacher, S.; Romar, H.; Wendling, L.; Koukkari, P. Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal. Appl. Sci. 2020, 10, 788. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. NPJ Clean. Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Minagricultura. Cadena del Fique y su Agroindustria; Minagricultura: Bogotá, Colombia, 2018.
- Gordon, M. Aprovechamiento del Bagazo de Fique (Furcraea macrophylla) en la Producción de Compost, Vereda “el Maco”, Municipio de Jámbalo—Cauca; Universidad Autonoma del Cauca: Popayán, Colombia, 2019. [Google Scholar]
- Duran, D.; Gonzalez, A. Determinación del Uso de los Residuos de Fique Provenientes del Proceso de Desfibrado, Como Sustrato Para la Producción de Sorbitol; Fundación Universidad de América: Bogotá, Colombia, 2022. [Google Scholar]
- Universidad Nacional de Colombia. Bagazo del Fique, Con Alto Potencial Para Generar Energía; Universidad Nacional de Colombia: Medellín, Colombia, 2020. [Google Scholar]
- Park, J.-H.; Wang, J.J.; Meng, Y.; Wei, Z.; DeLaune, R.D.; Seo, D.-C. Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 274–282. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Deng, H.; Huang, P.; Ge, C.; Yu, H.; Xu, W. Effect of cassava waste biochar on sorption and release behavior of atrazine in soil. Sci. Total Environ. 2018, 644, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Burdová, H.; Brázová, V.; Kwoczynski, Z.; Snow, J.; Trögl, J.; Kříženecká, S. Miscanthus x giganteus biochar: Effective adsorption of pharmaceuticals from model solution and hospital wastewater. J. Clean. Prod. 2024, 460, 142545. [Google Scholar] [CrossRef]
- Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 2018, 171, 57–65. [Google Scholar] [CrossRef]
- Sutar, S.; Jadhav, J. A comparative assessment of the methylene blue dye adsorption capacity of natural biochar versus chemically altered activated carbons. Bioresour. Technol. Rep. 2023, 25, 101726. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Plazinski, W.; Dziuba, J.; Rudzinski, W. Modeling of sorption kinetics: The pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 2013, 19, 1055–1064. [Google Scholar] [CrossRef]
- ASTM D2395-14; Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D2395; Standard Test Method for Ash in Wood. ASTM International: West Conshohocken, PA, USA, 1984.
- Suárez Castañeda, J.L.; Restrepo Montoya, J.W.; Quinchía Figueroa, A.; Mercado Navarro, F.A. Fibras vegetales colombianas como refuerzo en compuestos de matriz polimérica. Rev. Tecnura 2017, 21, 57. [Google Scholar] [CrossRef]
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; CSIRO Publishing: Clayton, Australia, 2017. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Standard Operating Procedure for Cation Exchange Capacity and Exchangeable Bases 1N Ammonium Acetate, pH 7.0 Method; FAO: Rome, Italy, 2022. [Google Scholar]
- Reza, M.S.; Afroze, S.; Bakar, M.S.A.; Saidur, R.; Aslfattahi, N.; Taweekun, J.; Azad, A.K. Biochar characterization of invasive Pennisetum purpureum grass: Effect of pyrolysis temperature. Biochar 2020, 2, 239–251. [Google Scholar] [CrossRef]
- Diaz-Uribe, C.; Walteros, L.; Duran, F.; Vallejo, W.; Romero Bohórquez, A.R. Prosopis juliflora Seed Waste as Biochar for the Removal of Blue Methylene: A Thermodynamic and Kinetic Study. ACS Omega 2022, 7, 42916–42925. [Google Scholar] [CrossRef]
- González García, A.P.; Carlos Hernández, S.; Díaz Jiménez, L. Agave lechuguilla waste can be applied as biochar-adsorbent to remove arsenic from water. Int. J. Environ. Sci. Technol. 2025, 22, 9193–9208. [Google Scholar] [CrossRef]
- McCall, M.A.; Watson, J.S.; Tan, J.S.W.; Sephton, M.A. Biochar Stability Revealed by FTIR and Machine Learning. ACS Sustain. Resour. Manag. 2025, 2, 842–852. [Google Scholar] [CrossRef]
- Frišták, V.; Bošanská, D.; Pipíška, M.; Ďuriška, L.; Bell, S.M.; Soja, G. Physicochemical Characterization of Cherry Pits-Derived Biochar. Materials 2022, 15, 408. [Google Scholar] [CrossRef]
- Ray, A. Characterization of Biochars from Various Agricultural By-Products Using FTIR Spectroscopy, SEM focused with image Processing. Int. J. Agric. Environ. Biotechnol. 2020, 13, 423–430. [Google Scholar] [CrossRef]
- Sangsuk, S.; Napanya, P.; Tasen, S.; Baiya, P.; Buathong, C.; Keeratisoontornwat, K.; Suebsiri, S. Production of non-activated biochar based on Biden pilosa and its application in removing methylene blue from aqueous solutions. Heliyon 2023, 9, e15766. [Google Scholar] [CrossRef]
- Madriaga, V.G.C.; Mattos, J.P.R.; Rossa, V.; Ferreira, L.E.M.; Vasconcelos, S.C.; Silva, D.S.A.; Rocha, P.S.; dos Santos, R.D.; Silva, L.P.; Araujo, J.R.; et al. Metal-contaminated biochars as cheap and more sustainable catalysts for furfural conversion to value-added compounds. Mol. Catal. 2022, 531, 112692. [Google Scholar] [CrossRef]
- Liu, S.; Peng, S.; Zhang, B.; Xue, B.; Yang, Z.; Wang, S.; Xu, G. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials. RSC Adv. 2022, 12, 9587–9598. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef]
- Al-Haddad, M.; Rendek, E.; Corriou, J.P.; Mauviel, G. Biomass fast pyrolysis: Experimental analysis and modeling approach. Energy Fuels 2010, 24, 4689–4692. [Google Scholar] [CrossRef]
- Li, X.; Yin, C. A drying model for thermally large biomass particle pyrolysis. In Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 158, pp. 1294–1302. [Google Scholar] [CrossRef]
- Correa-Navarro, Y.M.; Moreno-Piraján, J.C.; Giraldo, L.; Rodríguez-Estupiñan, P. Caffeine Adsorption by Fique Bagasse Biochar Produced at Various Pyrolysis Temperatures. Orient. J. Chem. 2019, 35, 538–546. [Google Scholar] [CrossRef]
- Isahak, W.N.R.W.; Hisham, M.W.M.; Yarmo, M.A.; Yun Hin, T.Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16, 5910–5923. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Méndez, A.; Gascó, G.; Lado, M.; Paz-González, A. The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes. Appl. Sci. 2024, 14, 4283. [Google Scholar] [CrossRef]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. Energies 2023, 16, 6936. [Google Scholar] [CrossRef]
- Bouchelta, C.; Medjram, M.S.; Zoubida, M.; Chekkat, F.A.; Ramdane, N.; Bellat, J.P. Effects of pyrolysis conditions on the porous structure development of date pits activated carbon. J. Anal. Appl. Pyrolysis 2012, 94, 215–222. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Lu, S. Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils. Geoderma 2021, 397, 115097. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil. Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef]
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Zivanovic, V.; Cornelissen, G.; Mulder, J. Cation exchange capacity of biochar: An urgent method modification. Sci. Total Environ. 2018, 642, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Adame, R.; Limón, P.; Sandoval, I. Determinación del valor de sorción de azul de metileno para fillers mediante la técnica de espectrofotometría visible. Rev. Ing. Obras Civ. 2016, 6, 16–21. [Google Scholar]
- Álamo, J. Preparación y Síntesis de Materiales Adsorbentes para la Eliminación de Contaminantes en Efluentes Acuosos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2013. [Google Scholar]
- Harter, J.; Krause, H.M.; Schuettler, S.; Ruser, R.; Fromme, M.; Scholten, T.; Kappler, A.; Behrens, S. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 2014, 8, 660–674. [Google Scholar] [CrossRef]
- Yang, C.; Lu, S. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Sci. Total Environ. 2022, 805. [Google Scholar] [CrossRef] [PubMed]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Fang, J.; Zhang, M.; Chen, H.; Zhou, Y.; Creamer, A.E.; Sun, Y.; Yang, L. Characterization and environmental applications of clay–biochar composites. Chem. Eng. J. 2014, 242, 136–143. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Barszcz, W.; Łożyńska, M.; Molenda, J. Impact of pyrolysis process conditions on the structure of biochar obtained from apple waste. Sci. Rep. 2024, 14, 10501. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, R.; Xia, B.; Ying, R.; Hu, Z.; Tao, X.; Yu, H.; Xiao, F.; Chu, Q.; Chen, H.; et al. Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. Sustainability 2022, 14, 9022. [Google Scholar] [CrossRef]





| Pyrolysis Conditions | Biochar Yield (%) | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
|---|---|---|---|---|
| 550 °C 45 min | 25.120 ± 0.000 | 9.039 ± 0.120 | 1.953 × 10−2 ± 0.159 × 10−2 | 8.648 ± 0.802 |
| 550 °C 90 min | 25.330 ± 0.000 | 7.822 ± 0.116 | 1.661 × 10−2 ± 0.137 × 10−2 | 8.987 ± 1.454 |
| 550 °C 180 min | 25.330 ± 0.003 | 7.693 ± 1.024 | 1.723 × 10−2 ± 0.412 × 10−2 | 8.896 ± 0.957 |
| 700 °C 45 min | 21.450 ± 0.005 | 8.028 ± 1.063 | 1.485 × 10−2 ± 0.154 × 10−2 | 7.944 ± 0.347 |
| 700 °C 90 min | 20.500 ± 0.000 | 10.217 ± 0.123 | 1.931 × 10−2 ± 0.166 × 10−2 | 7.738 ± 2.021 |
| 700 °C 180 min | 20.400 ± 0.007 | 12.241 ± 0.123 | 2.172 × 10−2 ± 0.312 × 10−2 | 7.086 ± 0.742 |
| Pyrolysis Conditions | pH | CEC (meq/g Pellet) |
|---|---|---|
| 550 °C 45 min | 9.260 ± 0.003 | 17.820 ± 0.731 |
| 550 °C 90 min | 9.150 ± 0.001 | 10.615 ± 0.078 |
| 550 °C 180 min | 8.485 ± 0.0194 | 9.196 ± 0.0003 |
| 700 °C 45 min | 9.263 ± 0.0005 | 0.396 ± 0.00005 |
| 700 °C 90 min | 9.160 ± 0.0014 | <LOD |
| 700 °C 180 min | 9.183 ± 0.0482 | <LOD |
| Temperature (°C) | Model | q0 (mg/g) | qe (mg/g) | k (mg/g)1-n·(s)−1 | n | R2 |
|---|---|---|---|---|---|---|
| 550 | Özer | 2.887 | 0.180 | 8.246 | 1.520 | 0.989 |
| PFO | 2.887 | 0.143 | 4.110 | — | 0.982 | |
| PSO | 2.887 | 0.035 | 2.500 | — | 0.965 | |
| 700 | Özer | 2.354 | 0.331 | 73.814 | 2.590 | 0.984 |
| PFO | 2.354 | 0.324 | 7.670 | — | 0.961 | |
| PSO | 2.354 | 0.252 | 6.740 | — | 0.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinchia-Figueroa, A.M.; Ruiz Márquez, N.A.; Bustamante-Durango, M.; Sánchez, M.A.; Maya, J.C.; Solano, R.; Chejne, F. Adsorption Kinetics and Pollutant Capture in Aqueous Media Using Biochar from Pyrolyzed Fique Pellets. Reactions 2025, 6, 61. https://doi.org/10.3390/reactions6040061
Quinchia-Figueroa AM, Ruiz Márquez NA, Bustamante-Durango M, Sánchez MA, Maya JC, Solano R, Chejne F. Adsorption Kinetics and Pollutant Capture in Aqueous Media Using Biochar from Pyrolyzed Fique Pellets. Reactions. 2025; 6(4):61. https://doi.org/10.3390/reactions6040061
Chicago/Turabian StyleQuinchia-Figueroa, Adriana M., Nevis A. Ruiz Márquez, Mariana Bustamante-Durango, Mario A. Sánchez, Juan C. Maya, Roger Solano, and Farid Chejne. 2025. "Adsorption Kinetics and Pollutant Capture in Aqueous Media Using Biochar from Pyrolyzed Fique Pellets" Reactions 6, no. 4: 61. https://doi.org/10.3390/reactions6040061
APA StyleQuinchia-Figueroa, A. M., Ruiz Márquez, N. A., Bustamante-Durango, M., Sánchez, M. A., Maya, J. C., Solano, R., & Chejne, F. (2025). Adsorption Kinetics and Pollutant Capture in Aqueous Media Using Biochar from Pyrolyzed Fique Pellets. Reactions, 6(4), 61. https://doi.org/10.3390/reactions6040061

