Green-Synthesized Nanoflower FeNi Catalysts for Low-Temperature Pyrolysis of Waste Lubricating Oil into High-Quality Diesel-Like Fuel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of the FeNi/TiO2 Nanocatalyst
2.1.2. The Pyrolysis Process of Waste Lubricating Oil into Fuel Oil
3. Results
3.1. Analysis of Key Factors Affecting Pyrolysis Oil Quality from Factorial Design
3.2. The Determination of Optimal Factor Values for Optimization Is Based on Contour Plot Analysis
3.3. Optimization of the Green FeNi/TiO2 Synthesis Process to Enhance Efficiency and Effectiveness in the Pyrolysis of Waste Lubricating Oil
3.4. Optimization and Validation
Peak Number | Retention Time | Compound Name | wt% | CN * | CN *. wt% |
---|---|---|---|---|---|
1 | 1.654 | 1-Butanol. 3-methyl- | 0.282 | 18.0 | 0.1 |
2 | 1.946 | Cyclohexane | 0.356 | 20.0 | 0.2 |
3 | 1.985 | Hexane | 2.236 | 50.0 | 0.3 |
4 | 2.329 | Cyclopentene. 1-methyl- | 0.319 | 15.0 | 0.1 |
5 | 2.634 | Cyclopentane. 1.2-dimethyl-. trans- | 1.168 | 24.0 | 0.6 |
6 | 2.715 | Heptane | 2.690 | 56.0 | 0.8 |
7 | 2.768 | 1.3-Pentadiene. 2.4-dimethyl- | 1.366 | 15.0 | 0.1 |
8 | 3.003 | Cyclohexane. methyl- | 1.309 | 20.0 | 0.1 |
9 | 4.121 | Octane | 1.182 | 60.0 | 1.3 |
10 | 3.974 | 1-Octene | 1.533 | 40.0 | 1.1 |
11 | 3.895 | 1-Heptene. 2-methyl- | 0.788 | 27.0 | 0.4 |
12 | 3.765 | Cyclohexane. 1.3-dimethyl-. cis- | 0.465 | 30.5 | 0.3 |
13 | 3.540 | Hexane. 3-ethyl-4-methyl- | 0.779 | 18.9 | 0.3 |
14 | 9.840 | 1-Hexanol. 2-ethyl- | 0.514 | 23.5 | 0.2 |
15 | 2.410 | Hexane. 3.4-dimethyl- | 0.565 | 18.9 | 0.2 |
16 | 5.936 | 1-Octene. 2-methyl- | 2.131 | 50.0 | 0.9 |
17 | 5.227 | 5-Methyloctene-1 | 1.938 | 30.0 | 0.5 |
18 | 6.283 | Nonane | 3.780 | 74.0 | 2.1 |
19 | 6.079 | 1-Nonene | 1.605 | 51.0 | 1.3 |
20 | 8.548 | 2-Methyl-1-nonene | 1.056 | 49.1 | 0.8 |
21 | 8.729 | 1-Decene | 1.919 | 60.0 | 1.7 |
22 | 7.713 | 1-Octene. 2.6-dimethyl- | 0.766 | 49.0 | 0.5 |
23 | 5.588 | Benzene. (3.3-dimethylbutyl)- | 1.175 | 15.0 | 0.3 |
24 | 5.415 | 1-Iodo-2-methylnonane | 4.234 | 30.0 | 1.0 |
25 | 3.425 | 1-Octene. 3.7-dimethyl- | 0.817 | 48.0 | 0.6 |
26 | 7.630 | 3-Undecene. 6-methyl- | 1.968 | 66.0 | 0.8 |
27 | 8.964 | Undecane | 2.312 | 83.0 | 2.5 |
28 | 10.937 | Decane. 3-methyl- | 0.797 | 79.0 | 0.8 |
29 | 11.584 | 1-Undecanol | 1.427 | 53.2 | 1.5 |
30 | 14.714 | Dodecane | 2.712 | 74.0 | 2.4 |
31 | 11.393 | 1-Undecene. 2-methyl- | 1.883 | 56.8 | 0.6 |
32 | 13.636 | Undecane. 2-methyl- | 1.172 | 60.0 | 0.8 |
33 | 14.460 | 1-Dodecanol | 1.144 | 63.6 | 1.5 |
34 | 17.479 | Tridecane | 3.011 | 91.0 | 3.0 |
35 | 19.874 | 1-Tetradecanol | 1.300 | 80.8 | 1.0 |
36 | 20.110 | Tetradecane | 3.271 | 96.0 | 3.2 |
37 | 22.595 | Pentadecane | 3.996 | 95.0 | 3.6 |
38 | 24.949 | Heptadecane | 4.588 | 89.0 | 3.4 |
39 | 27.179 | Nonadecane | 5.721 | 90.0 | 3.9 |
40 | 27.293 | Pentadecane. 2.6.10.14-tetramethyl- | 3.743 | 90.0 | 3.2 |
41 | 21.626 | Hexadecane. 2.6.10.14-tetramethyl- | 2.833 | 50.0 | 1.0 |
42 | 33.249 | Eicosane | 3.985 | 100.0 | 2.9 |
43 | 29.298 | Heneicosane | 4.253 | 92.0 | 3.3 |
44 | 31.321 | Docosane | 5.400 | 93.0 | 3.3 |
45 | 3.662 | Oxalic acid. hexadecyl isohexyl ester | 3.886 | 30.0 | 1.2 |
46 | 36.854 | Tetracosane | 1.805 | 70.0 | 1.6 |
47 | 35.095 | Hexacosane | 3.820 | 96.0 | 3.1 |
Total | 64.3 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoque, R. Background Analysis and Development of a Lubricating Oil Management System for Bangladesh. Master’s Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2019. [Google Scholar]
- French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 2010, 91, 25–32. [Google Scholar] [CrossRef]
- Parapat, R.Y.; Putra, M.F.R.; Zamaludin, Z.; Permadi, D.A.; Aschuri, I.; Yuono, Y.; Noviyanto, A.; Schwarze, M.; Schomäcker, R. Optimized Synthesis of FeNi/TiO2 Green Nanocatalyst for High-Quality Liquid Fuel Production via Mild Pyrolysis. J. Kim. Sains Dan Apl. 2023, 26, 391–403. [Google Scholar] [CrossRef]
- Han, Q.; Rehman, M.U.; Wang, J.; Rykov, A.; Gutiérrez, O.Y.; Zhao, Y.; Wang, S.; Ma, X.; Lercher, J.A. The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Appl. Catal. B Environ. 2019, 253, 348–358. [Google Scholar] [CrossRef]
- Shi, D.; Wojcieszak, R.; Paul, S.; Marceau, E. Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation? Catalysts 2019, 9, 451. [Google Scholar] [CrossRef]
- Zeng, K.; Cheng, L.; Hu, W.; Li, J. Synthesis, Stability, and Tribological Performance of TiO2 Nanomaterials for Advanced Applications. Lubricants 2025, 13, 56. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021, 19, 355–374. [Google Scholar] [CrossRef]
- Parapat, R.Y.; Schwarze, M.; Ibrahim, A.; Tasbihi, M.; Schomäcker, R. Efficient preparation of nanocatalysts. Case study: Green synthesis of supported Pt nanoparticles by using microemulsions and mangosteen peel extract. RSC Adv. 2022, 12, 34346–34358. [Google Scholar] [CrossRef]
- López-Quintela, M.A.; Rivas, J.; Blanco, M.C. Synthesis of Nanoparticles in Microemulsions. In Nanoscale Materials; Kluwer Academic Publishers: Boston, MA, USA, 2004; pp. 135–155. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.-S. Grape pomace extracted tannin for green synthesis of silver nanoparticles: Assessment of their antidiabetic, antioxidant potential and antimicrobial activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Chopra, C.; Bhardwaj, P.; Dhanjal, D.S.; Singh, R.; Najda, A.; Cruz-Martins, N.; Singh, S.; Sharma, R.; Kuča, K.; et al. Biogenic Metallic Nanoparticles from Seed Extracts: Characteristics, Properties, and Applications. J. Nanomater. 2022, 2022, 2271278. [Google Scholar] [CrossRef]
- Shafey, A.M.E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process. Synth. 2020, 9, 304–339. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Su, H.; Gu, L.; Han, T.; Meng, F.; Liu, C. Making Good Use of Food Wastes: Green Synthesis of Highly Stabilized Silver Nanoparticles from Grape Seed Extract and Their Antimicrobial Activity. Food Biophys. 2015, 10, 12–18. [Google Scholar] [CrossRef]
- Parapat, R.Y.; Yudatama, F.A.; Musadi, M.R.; Schwarze, M.; Schomäcker, R. Antioxidant as Structure Directing Agent in Nanocatalyst Preparation. Case Study: Catalytic Activity of Supported Pt Nanocatalyst in Levulinic Acid Hydrogenation. Ind. Eng. Chem. Res. 2019, 58, 2460–2470. [Google Scholar] [CrossRef]
- Pataki, T.; Bak, I.; Kovacs, P.; Bagchi, D.; Das, D.K.; Tosaki, A. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am. J. Clin. Nutr. 2002, 75, 894–899. [Google Scholar] [CrossRef]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The study of antioxidant components in grape seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yogeshwar, P.; Bajpai, S.; Jaiswal, P.; Yadav, S.; Pathak, D.P.; Sonker, M.; Tiwary, S.K. Nanomaterials: Stimulants for biofuels and renewables, yield and energy optimization. Mater. Adv. 2021, 2, 5318–5343. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Auwal, I.A.; Shirsath, S.E.; Gondal, M.A.; Sertkol, M.; Baykal, A. Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. Arab. J. Chem. 2021, 14, 103261. [Google Scholar] [CrossRef]
- Ahmad, N.M.; Mohamed, A.H.; Zainal-Abidin, N.; Nawahwi, M.Z.; Azzeme, A.M. Effect of optimisation variable and the role of plant extract in the synthesis of nanoparticles using plant-mediated synthesis approaches. Inorg. Chem. Commun. 2024, 161, 111839. [Google Scholar] [CrossRef]
- Aljaafari, A. Effect of Metal and Non-metal Doping on the Photocatalytic Performanceof Titanium dioxide (TiO2): A Review. Curr. Nanosci. 2022, 18, 499–519. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Sonibare, J.A.; Omoleye, J.A.; Emetere, M.E.; Elehinafe, F.B. A review on treatment methods of used lubricating oil. Int. J. Civ. Eng. Technol. 2018, 9, 506–514. [Google Scholar]
- Alavi, S.E.; Abdoli, M.A.; Khorasheh, F.; Nezhadbahadori, F.; Bayandori Moghaddam, A. Nanomaterial-assisted pyrolysis of used lubricating oil and fuel recovery. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 14620–14634. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Jusoh, A.; Chong, C.T.; Ani, F.N.; Chase, H.A. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew. Sustain. Energy Rev. 2016, 53, 741–753. [Google Scholar] [CrossRef]
- Shahbeik, H.; Shafizadeh, A.; Gupta, V.K.; Lam, S.S.; Rastegari, H.; Peng, W.; Pan, J.; Tabatabaei, M.; Aghbashlo, M. Using nanocatalysts to upgrade pyrolysis bio-oil: A critical review. J. Clean. Prod. 2023, 413, 137473. [Google Scholar] [CrossRef]
- Kong, L.; Wang, J.; Dong, K.; Sun, Z.; Tang, B.; Zhao, N.; Wang, Y.; Ou, J.; Guo, F. Catalytic pyrolysis characteristics of polystyrene by biomass char-supported nanocatalysts. J. Anal. Appl. Pyrolysis 2024, 179, 106511. [Google Scholar] [CrossRef]
- Gamboa, A.R.; Rocha, A.M.; dos Santos, L.R.; de Carvalho, J.A., Jr. Tire pyrolysis oil in Brazil: Potential production and quality of fuel. Renew. Sustain. Energy Rev. 2020, 120, 109614. [Google Scholar] [CrossRef]
- Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users|Energy & Fuels n.d. Available online: https://pubs.acs.org/doi/abs/10.1021/ef980272b (accessed on 25 July 2025).
- Xiang, L.; Li, H.; Qu, Q.; Lin, F.; Yan, B.; Chen, G. In-situ catalytic pyrolysis of heavy oil residue with steel waste to upgrade product quality. J. Anal. Appl. Pyrolysis 2022, 167, 105676. [Google Scholar] [CrossRef]
- Mishra, A.; Siddiqi, H.; Kumari, U.; Behera, I.D.; Mukherjee, S.; Meikap, B.C. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 150, 111446. [Google Scholar] [CrossRef]
- Basuki, W.; Syahputra, K.; Suryani, A.T.; Pradipta, I. Biodegradation of used engine oil by Acinetobacter junii TBC 1.2. Indones. J. Biotechnol. 2011, 16, 132–138. [Google Scholar] [CrossRef]
- Indonesia: Fuels: Diesel and Gasoline|Transport Policy n.d. Available online: https://www.transportpolicy.net/standard/indonesia-fuels-diesel-and-gasoline/ (accessed on 24 July 2025).
- Parapat, R.Y.; Laksono, A.T.; Fauzi, R.I.; Maulani, Y.; Haryanto, F.; Noviyanto, A.; Schwarze, M.; Schomäcker, R. Effect of design parameters in nanocatalyst synthesis on pyrolysis for producing diesel-like fuel from waste lubricating oil. Nanoscale 2024, 16, 15568–15584. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Zhang, Y.-J.; Zhu, X.-D.; Gu, H.-M.; Zhu, Z.-Q.; Liu, S.-H.; Sun, X.-Y.; Jiang, X.-L. Effects of Diesel Hydrocarbon Components on Cetane Number and Engine Combustion and Emission Characteristics. Appl. Sci. 2022, 12, 3549. [Google Scholar] [CrossRef]
- Osei, G.K.; Nzihou, A.; Yaya, A.; Minh, D.P.; Onwona-Agyeman, B. Catalytic Pyrolysis of Waste Engine Oil over Y Zeolite Synthesized from Natural Clay. Waste Biomass Valorization 2021, 12, 4157–4170. [Google Scholar] [CrossRef]
- Encyclopedia of Liquid Fuels n.d. Available online: https://www.degruyterbrill.com/document/doi/10.1515/9783110750287/html (accessed on 3 September 2025).
- Santhoshkumar, A.; Ramanathan, A. Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine. Energy 2020, 197, 117240. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels production through biomass pyrolysis—A technological review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Liang, F.; Lu, M.; Keener, T.C.; Liu, Z.; Khang, S.-J. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. J. Environ. Monit. 2005, 7, 983–988. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Xu, W.; Ma, Y.; Tan, D.; Peng, Q.; Tan, Y.; Chen, L. Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review. Fuel Process. Technol. 2022, 235, 107373. [Google Scholar] [CrossRef]
- Zahir Hussain, A.; Santhoshkumar, A.; Ramanathan, A. Assessment of pyrolysis waste engine oil as an alternative fuel source for diesel engine. J. Therm. Anal. Calorim. 2020, 141, 2277–2293. [Google Scholar] [CrossRef]
- Barra, I.; Mansouri, M.A.; Cherrah, Y.; Kharbach, M.; Bouklouze, A. FTIR fingerprints associated to a PLS-DA model for rapid detection of smuggled non-compliant diesel marketed in Morocco. Vib. Spectrosc. 2019, 101, 40–45. [Google Scholar] [CrossRef]
- Hidayanti, Y.F. Analisis Komposisi Hidrokarbon Bahan Bakar Minyak Menggunakan Kromatografi Gas; IPB University: Bogor, Indonesia, 2022. [Google Scholar]
Factor | Response | ||||||
---|---|---|---|---|---|---|---|
FeNi in Precursor (mg) | Natural Reductant (mg) | TiO2 Support (g) | Reaction Time (h) | Oil Yield. (%) | Calorific Value (cal/g) | Density (kg/L) | Viscosity (cP) |
(A) | (B) | (C) | (D) | ||||
40 | 93.8 | 1.5 | 0.5 | 76.7 | 11,040 | 1.297 | 780 |
60 | 62.5 | 1.0 | 2.0 | 73.9 | 11,047 | 1.619 | 780 |
40 | 93.8 | 1.5 | 1.5 | 75.4 | 11,113 | 1.501 | 781 |
20 | 62.5 | 2.0 | 1.0 | 76.0 | 11,061 | 1.213 | 776 |
60 | 62.5 | 2.0 | 2.0 | 75.7 | 11,662 | 1.012 | 768 |
40 | 32.8 | 1.5 | 1.5 | 75.0 | 11,142 | 1.153 | 771 |
20 | 62.5 | 1.0 | 1.0 | 76.8 | 11,064 | 0.818 | 761 |
1 | 93.8 | 1.5 | 1.5 | 76.3 | 11,065 | 0.705 | 760 |
40 | 93.8 | 1.5 | 1.5 | 75.3 | 11,113 | 1.501 | 781 |
40 | 93.8 | 1.5 | 1.5 | 75.3 | 11,113 | 1.501 | 781 |
40 | 93.8 | 1.5 | 1.5 | 75.3 | 11,113 | 1.501 | 781 |
20 | 125.0 | 2.0 | 1.0 | 76.5 | 11,094 | 1.183 | 773 |
60 | 62.5 | 1.0 | 1.0 | 77.1 | 11,071 | 1.432 | 779 |
60 | 125.0 | 2.0 | 1.0 | 75.5 | 11,021 | 1.667 | 790 |
40 | 154.7 | 1.5 | 1.5 | 75.7 | 11,085 | 1.850 | 790 |
20 | 62.5 | 2.0 | 2.0 | 72.2 | 11,009 | 1.132 | 769 |
20 | 125.0 | 1.0 | 2.0 | 74.0 | 11,080 | 1.238 | 776 |
40 | 93.8 | 2.5 | 1.5 | 75.3 | 11,167 | 1.451 | 785 |
60 | 125.0 | 1.0 | 1.0 | 76.0 | 11,143 | 1.313 | 778 |
40 | 93.8 | 1.5 | 2.5 | 74.0 | 11,187 | 1.706 | 782 |
40 | 93.8 | 1.5 | 1.5 | 75.3 | 11,113 | 1.501 | 781 |
40 | 93.8 | 1.5 | 1.5 | 75.3 | 11,113 | 1.501 | 781 |
79 | 93.8 | 1.5 | 1.5 | 74.4 | 11,162 | 2.298 | 802 |
60 | 125.0 | 1.0 | 2.0 | 71.8 | 11,043 | 3.671 | 815 |
40 | 93.8 | 0.5 | 1.5 | 75.3 | 11,060 | 1.552 | 776 |
40 | 93.8 | 1.5 | 1.5 | 75.3 | 11,113 | 1.501 | 781 |
60 | 62.5 | 2.0 | 1.0 | 73.4 | 11,013 | 2.386 | 810 |
20 | 125.0 | 2.0 | 2.0 | 77.8 | 11,160 | 1.032 | 767 |
60 | 125.0 | 2.0 | 2.0 | 75.6 | 11,108 | 2.178 | 811 |
20 | 125.0 | 1.0 | 1.0 | 76.9 | 11,140 | 1.161 | 775 |
20 | 62.5 | 1.0 | 2.0 | 76.4 | 11,100 | 0.968 | 765 |
Compounds | Composition of Pyrolysis Oil | |
---|---|---|
Before (%) [30] | After (%) | |
C5 | 0 | 0.282 |
C6 | 0 | 2.911 |
C7 | 1.790 | 6.532 |
C8 | 7.440 | 8.826 |
C9 | 12.330 | 10.454 |
C10 | 12.520 | 9.967 |
C11 | 9.390 | 7.504 |
C12 | 2.830 | 4.911 |
C13 | 1.340 | 3.011 |
C14 | 0 | 4.570 |
C15 | 0.960 | 3.996 |
C17 | 0 | 4.588 |
C18 | 1.150 | 0 |
C19 | 0.000 | 6.464 |
C20 | 3.820 | 6.818 |
C21–40 | 46.430 | 19.164 |
Quality | Average Results | Optimization Results | Validation | Standard of Premi-um Diesel [31] |
---|---|---|---|---|
Oil yield (%) | 73.3 | 77.6 | 76.0 | - |
Caloric value (cal/g) | 11,041 | 11,110 | 11,016 | >10,500 |
Density (Kg/L) | 815.4 | 825 | 829.4 | 815–880 |
Viscosity (cP) | 3.7 | 2.5 | 2.2 | 2.0–5.0 |
Compounds | Composition of Pyrolysis Oil | Literature |
---|---|---|
After (%) | Diesel (%) [38] | |
C5 | 0.282 | 0.000 |
C6 | 2.911 | 0.201 |
C7 | 6.532 | 1.892 |
C8 | 8.826 | 1.464 |
C9 | 10.454 | 3.306 |
C10 | 9.967 | 2.880 |
C11 | 7.504 | 4.674 |
C12 | 4.911 | 7.961 |
C13 | 3.011 | 7.140 |
C14 | 4.570 | 7.130 |
C15 | 3.996 | 4.844 |
C17 | 4.588 | 4.725 |
C18 | 0.000 | 2.750 |
C19 | 6.464 | 1.613 |
C20 | 6.818 | 16.020 |
C21–40 | 19.164 | 33.400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parapat, R.Y.; Khoirin, I.A.; Cahyani, R.K.; Septariani, N.; Nurlian, S.P.; Haryanto, F.; Hamdhan, M.N.N.; Schwarze, M. Green-Synthesized Nanoflower FeNi Catalysts for Low-Temperature Pyrolysis of Waste Lubricating Oil into High-Quality Diesel-Like Fuel. Reactions 2025, 6, 50. https://doi.org/10.3390/reactions6030050
Parapat RY, Khoirin IA, Cahyani RK, Septariani N, Nurlian SP, Haryanto F, Hamdhan MNN, Schwarze M. Green-Synthesized Nanoflower FeNi Catalysts for Low-Temperature Pyrolysis of Waste Lubricating Oil into High-Quality Diesel-Like Fuel. Reactions. 2025; 6(3):50. https://doi.org/10.3390/reactions6030050
Chicago/Turabian StyleParapat, Riny Yolandha, Irsan Asfari Khoirin, Reygina Katon Cahyani, Najla Septariani, Sabrina Putri Nurlian, Freddy Haryanto, Muhammad Nadhif Noer Hamdhan, and Michael Schwarze. 2025. "Green-Synthesized Nanoflower FeNi Catalysts for Low-Temperature Pyrolysis of Waste Lubricating Oil into High-Quality Diesel-Like Fuel" Reactions 6, no. 3: 50. https://doi.org/10.3390/reactions6030050
APA StyleParapat, R. Y., Khoirin, I. A., Cahyani, R. K., Septariani, N., Nurlian, S. P., Haryanto, F., Hamdhan, M. N. N., & Schwarze, M. (2025). Green-Synthesized Nanoflower FeNi Catalysts for Low-Temperature Pyrolysis of Waste Lubricating Oil into High-Quality Diesel-Like Fuel. Reactions, 6(3), 50. https://doi.org/10.3390/reactions6030050