Design and Synthesis of E7820/Tasisulam Hybrids as Potential DCAF15 Binders
Abstract
:1. Introduction
2. Chemical Synthesis
3. Results and Discussion
4. Conclusions
5. Materials and Methods
5.1. DCAF15 Target Engagement—Polarized Fluorescence
5.2. General Information
5.3. Experimental Procedure
- General procedure A: sulfamoylamide formation
- General procedure B: saponification
- General procedure C: Amide formation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, T.; Goralski, M.; Gaskill, N.; Capota, E.; Kim, J.; Ting, T.C.; Xie, Y.; Williams, N.S.; Nijhawan, D. Anticancer Sulfonamides Target Splicing by Inducing RBM39 Degradation via Recruitment to DCAF15. Science 2017, 356, eaal3755. [Google Scholar] [CrossRef] [PubMed]
- Bussiere, D.E.; Xie, L.; Srinivas, H.; Shu, W.; Burke, A.; Be, C.; Zhao, J.; Godbole, A.; King, D.; Karki, R.G.; et al. Structural Basis of Indisulam-Mediated RBM39 Recruitment to DCAF15 E3 Ligase Complex. Nat. Chem. Biol. 2020, 16, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidou, M.; Arkin, M.R. Molecular Glues for Protein-Protein Interactions: Progressing toward a New Dream. Cell Chem. Biol. 2024, 31, 1064–1088. [Google Scholar] [CrossRef]
- Ishida, T.; Ciulli, A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS Discov. 2021, 26, 484–502. [Google Scholar] [CrossRef] [PubMed]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Holdgate, G.A.; Bardelle, C.; Berry, S.K.; Lanne, A.; Cuomo, M.E. Screening for Molecular Glues—Challenges and Opportunities. SLAS Discov. 2024, 29, 100136. [Google Scholar] [CrossRef]
- Du, X.; Volkov, O.A.; Czerwinski, R.M.; Tan, H.L.; Huerta, C.; Morton, E.R.; Rizzi, J.P.; Wehn, P.M.; Xu, R.; Nijhawan, D.; et al. Structural Basis and Kinetic Pathway of RBM39 Recruitment to DCAF15 by a Sulfonamide Molecular Glue E7820. Structure 2019, 27, 1625–1633.e3. [Google Scholar] [CrossRef]
- Lucas, S.C.C.; Ahmed, A.; Ashraf, S.N.; Argyrou, A.; Bauer, M.R.; De Donatis, G.M.; Demanze, S.; Eisele, F.; Fusani, L.; Hock, A.; et al. Optimization of Potent Ligands for the E3 Ligase DCAF15 and Evaluation of Their Use in Heterobifunctional Degraders. J. Med. Chem. 2024, 67, 5538–5566. [Google Scholar] [CrossRef]
- Devarajappa, R.; Kiyeleko, S.; Hocine, S.; Cosson, V.; Calandrino, R.; Baló, T.; Bordelo, J.A.; Triboulet, S.; Caruana, L.; Klipfel, L.; et al. Design and Synthesis of 7-(N-Aryl Pyrrolidinyl) Indoles as Potential DCAF15 Binders. Reactions 2025, 6, 20. [Google Scholar] [CrossRef]
- Faust, T.B.; Yoon, H.; Nowak, R.P.; Donovan, K.A.; Li, Z.; Cai, Q.; Eleuteri, N.A.; Zhang, T.; Gray, N.S.; Fischer, E.S. Structural Complementarity Facilitates E7820-Mediated Degradation of RBM39 by DCAF15. Nat. Chem. Biol. 2019, 16, 7–14. [Google Scholar] [CrossRef]
- Coomar, S.; Gillingham, D.G. Exploring DCAF15 for Reprogrammable Targeted Protein Degradation. bioRxiv 2019, 542506. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Wang, Z.; Liu, X.; Yi, F.; Zhang, Z.; Shi, X.; Qi, D.; Yang, M.; Yang, Q. A Pyrrole Derivative and Its Preparation Method and Application. CN118344277A, 16 July 2024. [Google Scholar]
- Tomoya, T.; Yukawa, T. Aromatic Ring Compound. WO2011059042A1, 19 May 2011. [Google Scholar]
- Miller, M.T.; Anderson, C.; Arumugam, V.; Bear, B.R.; Binch, H.M.; Clemens, J.J.; Cleveland, T.; Conroy, E.; Coon, T.R.; Frieman, B.A.; et al. Modulators of Cystic Fibrosis Transmembrane Conductance Regulator. US20160095858A1, 7 April 2016. [Google Scholar]
- Heistracher, E.; Fischer, K.; Mayer, H.; Saupe, T.; Hamprecht, G.; Ditrich, K.; Kuekenhoehner, T.; Gerber, M.; Walter, H.; Westphalen, K.-O. Sulfonamide. DE4029753A1, 20 September 1990. [Google Scholar]
- Smith, N.; Bonnefous, C.; Govek, S.P.; Wu, D.; Pinkerton, A.B.; Kahraman, M.; Cook, T.; Noble, S.A.; Borchardt, A.J.; Prins, T. Heterocyclic Modulators of Gpr119 for Treatment of Disease. WO2009117421A2, 17 March 2009. [Google Scholar]
- Murthi, K.K.; Joshi, B.P. Preparation of N-Acylsulfonamide Derivatives as UPPS Inhibitors. IN2015KO00769, 8 December 2015. [Google Scholar]
- Senge, M.O.; Flögel, O.; Ruhlandt-Senge, K. 2,3,7,8,12,13,17,18-Octachloroporphyrin. J. Porphyr. Phthalocyanines 2001, 5, 503–506. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Q.; Jiang, X. Metal-Free Construction of Primary Sulfonamides through Three Diverse Salts. Green Chem. 2018, 20, 5469–5473. [Google Scholar] [CrossRef]
- Mishra, C.B.; Kumari, S.; Angeli, A.; Bua, S.; Buonanno, M.; Monti, S.M.; Tiwari, M.; Supuran, C.T. Discovery of Potent Anti-Convulsant Carbonic Anhydrase Inhibitors: Design, Synthesis. Eur. J. Med. Chem. 2018, 156, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Pelz, N.F.; Bian, Z.; Zhao, B.; Shaw, S.; Tarr, J.C.; Belmar, J.; Gregg, C.; Camper, D.M.V.; Goodwin, C.M.; Arnold, A.L.; et al. Discovery of 2-Indole-Acylsulfonamide Myeloid Cell Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods. J. Med. Chem. 2016, 59, 2054–2066. [Google Scholar] [CrossRef]
- Hedstrom, L. Serine Protease Mechanism and Specificity. Chem. Rev. 2002, 102, 4501–4523. [Google Scholar] [CrossRef]
- Teng, M.; Gray, N.S. The Rise of Degrader Drugs. Cell Chem. Biol. 2023, 30, 864–878. [Google Scholar] [CrossRef]
- Schreiber, S.L. The Rise of Molecular Glues. Cell 2021, 184, 3–9. [Google Scholar] [CrossRef]
- Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic Approaches and Pharmaceutical Applications of Chloro-Containing Molecules for Drug Discovery: A Critical Review. Eur. J. Med. Chem. 2019, 173, 117–153. [Google Scholar] [CrossRef] [PubMed]
- Chiodi, D.; Ishihara, Y. “Magic Chloro”: Profound Effects of the Chlorine Atom in Drug Discovery. J. Med. Chem. 2023, 66, 5305–5331. [Google Scholar] [CrossRef] [PubMed]
Entry | Compound | R1 | R2 | R3 | Binding Affinity AC50 (µM) |
1 | S7 | H | H | H | 93 |
2 | S4 | H | H | o-CO2Me | >100 |
3 | S5 | H | H | m-CO2Me | 22 |
4 | S6 | H | H | p-CO2Me | 63 |
5 | S12 | H | H | o-CO2H | 35 |
6 | S13 | H | H | m-CO2H | 21 |
7 | S14 | H | H | p-CO2H | >100 |
9 | S19 | H | H | m-C(O)NHiPr | 32 |
10 | S20 | H | H | p-C(O)NHiPr | 53 |
11 | S11 | H | Cl | H | 24 |
12 | S10 | H | Cl | p-CO2Me | 22 |
13 | S17 | H | Cl | p-CO2H | 31 |
14 | 5 | Cl | Cl | H | 4 |
15 | 2 | Cl | Cl | o-CO2Me | 7.5 |
16 | 3 | Cl | Cl | m-CO2Me | 5.8 |
17 | 4 | Cl | Cl | p-CO2Me | 2.3 |
18 | 6 | Cl | Cl | o-CO2H | 2.8 |
19 | 7 | Cl | Cl | m-CO2H | 5.8 |
20 | 8 | Cl | Cl | p-CO2H | 7.9 |
21 | 11 | Cl | Cl | p-C(O)NHiPr | 5.1 |
22 | E7820 | 8.5 | |||
23 | Tasisulam | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hocine, S.; Cosson, V.; Calandrino, R.; Baló, T.; Bordelo, J.A.; Triboulet, S.; Caruana, L.; Klipfel, L.; Calis, S.; Herner, A.; et al. Design and Synthesis of E7820/Tasisulam Hybrids as Potential DCAF15 Binders. Reactions 2025, 6, 34. https://doi.org/10.3390/reactions6020034
Hocine S, Cosson V, Calandrino R, Baló T, Bordelo JA, Triboulet S, Caruana L, Klipfel L, Calis S, Herner A, et al. Design and Synthesis of E7820/Tasisulam Hybrids as Potential DCAF15 Binders. Reactions. 2025; 6(2):34. https://doi.org/10.3390/reactions6020034
Chicago/Turabian StyleHocine, Sofiane, Victor Cosson, Remi Calandrino, Timea Baló, Jayson Alves Bordelo, Sébastien Triboulet, Laure Caruana, Laurence Klipfel, Sandrine Calis, András Herner, and et al. 2025. "Design and Synthesis of E7820/Tasisulam Hybrids as Potential DCAF15 Binders" Reactions 6, no. 2: 34. https://doi.org/10.3390/reactions6020034
APA StyleHocine, S., Cosson, V., Calandrino, R., Baló, T., Bordelo, J. A., Triboulet, S., Caruana, L., Klipfel, L., Calis, S., Herner, A., & Hanessian, S. (2025). Design and Synthesis of E7820/Tasisulam Hybrids as Potential DCAF15 Binders. Reactions, 6(2), 34. https://doi.org/10.3390/reactions6020034