Synthesis and Characterization of New Cyclam-Based Zr(IV) Alkoxido Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Considerations
2.2. Synthesis and Characterization
2.3. General Procedure for X-ray Crystallography
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hegedus, L.; Lipshutz, B.; Nozaki, H.; Reetz, M.; Rittmeyer, P.; Smith, K.; Totter, F.; Yamamoto, H. Organometallics in Synthesis: A Manual; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1994; pp. 195–282. [Google Scholar]
- Yamasaki, S.; Kanai, M.; Shibasaki, M. Zirconium Alkoxides in Catalysis. Chem. Eur. J. 2001, 7, 4066–4072. [Google Scholar] [CrossRef]
- Stopper, A.; Rosen, T.; Venditto, V.; Goldberg, I.; Kol, M. Group 4 Metal Complexes of Phenylene-Salalen Ligands in rac-Lactide Polymerization Giving High Molecular Weight Stereoblock Poly (lactic acid). Chem. Eur. J. 2017, 23, 11540–11548. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.D.; Hancock, S.L.; McKeown, P.; Schäfer, P.M.; Buchard, A.; Thomas, L.H.; Mahon, M.F.; Lowe, J.P. Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide. Chem. Commun. 2014, 50, 15967–15970. [Google Scholar] [CrossRef] [Green Version]
- Romain, C.; Heinrich, B.; Laponnaz, S.B.; Dagorne, S. A robust zirconium N-heterocyclic carbene complex for the living and highly stereoselective ring-opening polymerization of rac-lactide. Chem. Commun. 2012, 48, 2213–2215. [Google Scholar] [CrossRef] [PubMed]
- Doerr, A.M.; Burroughs, J.M.; Legaux, N.M.; Long, B.K. Redox-switchable ring-opening polymerization by tridentate ONN-type titanium and zirconium catalysts. Cat. Sci. Tech. 2020, 10, 6501–6510. [Google Scholar] [CrossRef]
- Wang, X.; Thevenon, A.; Brosmer, J.L.; Yu, I.; Khan, S.I.; Mehrkhodavandi, P.; Diaconescu, P.L. Redox Control of Group 4 Metal Ring-Opening Polymerization Activity toward L-Lactide and ε-Caprolactone. J. Am. Chem. Soc. 2014, 136, 11264–11267. [Google Scholar] [CrossRef] [Green Version]
- Normand, A.T.; Malacea-Kabbara, R.; Lapenta, R.; Dajnak, A.; Richard, P.; Cattey, H.; Bolley, A.; Grassi, A.; Milione, S.; Auffrant, A.; et al. Phosphasalen group IV metal complexes: Synthesis, characterization and ring opening polymerization of lactide. Dalton Trans. 2020, 49, 6989–7004. [Google Scholar] [CrossRef]
- Stopper, A.; Press, K.; Okuda, J.; Goldberg, I.; Kol, M. Zirconium Complexes of Phenylene-Bridged {ONSO} Ligands: Coordination Chemistry and Stereoselective Polymerization of rac-Lactide. Inorg. Chem. 2014, 53, 9140–9150. [Google Scholar] [CrossRef]
- McKeown, P.; Brown-Humes, J.; Davidson, M.G.; Mahon, M.F.; Woodman, T.J.; Jones, M.D. Ligands and complexes based on piperidine and their exploitation of the ring opening polymerisation of rac-lactide. Dalton Trans. 2017, 46, 5048–5057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapenta, R.; Buonerba, A.; Nisi, A.D.; Monari, M.; Grassi, A.; Milione, S.; Capacchione, C. Stereorigid OSSO-Type Group 4 Metal Complexes in the Ring-Opening Polymerization of rac-lactide. Inorg. Chem. 2017, 56, 3447–3458. [Google Scholar] [CrossRef]
- Turner, Z.R.; Lamb, J.V.; Robinson, T.P.; Mandal, D.; Buffet, J.-C.; O’Hare, D. Ring-opening polymerization of L- and rac-lactide using group 4 permethylpentalene aryloxides and alkoxides. Dalton Trans. 2021, 50, 4805–4818. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.G.; Hild, F.; Munhá, R.F.; Veiros, L.F.; Dagorne, S.; Martins, A.M. Synthesis and structural characterization of novel cyclam-based zirconium complexes and their use in the controlled ROP of rac-lactide: Access to cyclam-functionalized polylactide materials. Dalton Trans. 2012, 41, 14288–14298. [Google Scholar] [CrossRef]
- Alves, L.G.; Martins, A.M. Cyclam Functionalization through Isocyanate Insertion in Zr-N Bonds. Inorg. Chem. 2012, 51, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.G.; Madeira, F.; Munhá, R.F.; Barroso, S.; Veiros, L.F.; Martins, A.M. Reactions of heteroallenes with cyclam-based Zr(IV) complexes. Dalton Trans. 2015, 44, 1441–1455. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.G.; Antunes, M.A.; Matos, I.; Munhá, R.F.; Duarte, M.T.; Fernandes, A.C.; Marques, M.M.; Martins, A.M. Reactivity of a new family of diamido-diamine cyclam-based zirconium complexes in ethylene polymerization. Inorg. Chim. Acta 2010, 363, 1823–1830. [Google Scholar] [CrossRef]
- Antunes, M.A.; Munhá, R.F.; Alves, L.G.; Schafer, L.L.; Martins, A.M. Intramolecular hydroamination catalysis using trans-N,N’-dibenzylcyclam zirconium complexes. J. Organomet. Chem. 2011, 696, 2–6. [Google Scholar] [CrossRef]
- Alves, L.G.; Madeira, F.; Munhá, R.F.; Maulide, N.; Veiros, L.F.; Martins, A.M. Cooperative Metal-Ligand Hydroamination Catalysis Supported by C-H Activation in Cyclam Zr(IV) Complexes. Inorg. Chem. 2018, 57, 13034–13045. [Google Scholar] [CrossRef]
- Munhá, R.F.; Alves, L.G.; Bharathi, S.; Martins, A.M. A New Family of Zirconium Complexes Anchored on Dianionic Cyclam-based Ligands: Syntheses, Structures and Catalytic Applications. In Advances in Organometallic Chemistry: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book; Pombeiro, A.J.L., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Volume 2, pp. 315–323. [Google Scholar]
- Wong, J.K.-H.; Ast, S.; Yu, M.; Flehr, R.; Counsell, A.J.; Turner, P.; Crisologo, P.; Todd, M.H.; Rutledge, P.J. Synthesis and Evaluation of 1,8-Disubstituted-Cyclam/Naphtalimide Conjugates as Probes for Metal Ions. ChemistryOpen 2016, 5, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Voutsadaki, S.; Tsikalas, G.K.; Klontzas, E.; Froudakis, G.E.; Pergantis, S.A.; Demadis, K.D.; Katerinopoulos, H.E. A cyclam-type “turn on” fluorescent sensor selective for mercury ions in aqueous media. RSC Adv. 2012, 2, 12679–12682. [Google Scholar] [CrossRef]
- Liang, X.; Sadler, P.J. Cyclam complexes and their applications in medicine. Chem. Soc. Rev. 2004, 33, 246–266. [Google Scholar] [CrossRef]
- Yu, M.; Nagalingam, G.; Ellis, S.; Martinez, E.; Sintchenko, V.; Spain, M.; Rutledge, P.J.; Todd, M.H.; Triccas, J.A. Nontoxic Metal-Cyclam Complexes, a New Class of Compounds with Potency against Drug-Resistant Mycobacterium tuberculosis. J. Med. Chem. 2016, 59, 5917–5921. [Google Scholar] [CrossRef]
- Alves, L.G.; Pinheiro, P.F.; Feliciano, J.R.; Dâmaso, D.P.; Leitão, J.H.; Martins, A.M. Synthesis, antimicrobial activity and toxicity to nematodes of cyclam derivatives. Int. J. Antimicrob. Agents 2017, 49, 646–649. [Google Scholar] [CrossRef]
- Alves, L.G.; Portel, J.F.; Sousa, S.A.; Ferreira, O.; Almada, S.; Silva, E.R.; Martins, A.M.; Leitão, J.H. Investigations into the Structure/Antibacterial Activity Relationships of Cyclam and Cyclen Derivatives. Antibiotics 2019, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Pilon, A.; Lorenzo, J.; Rodriguez-Calado, S.; Adão, P.; Martins, A.M.; Valente, A.; Alves, L.G. New Cyclams and Their Copper(II) and Iron(III) Complexes: Synthesis and Potential Apllication as Anticancer Agents. ChemMedChem 2019, 14, 770–778. [Google Scholar] [CrossRef]
- Munhá, R.F.; Alves, L.G.; Maulide, N.; Duarte, M.T.; Markó, I.E.; Fryzuk, M.D.; Martins, A.M. trans-Disubstituted diamido-diamine cyclam zirconium complexes. Inorg. Chem. Commun. 2008, 11, 1174–1176. [Google Scholar] [CrossRef]
- SAINT. Version 7.03A; Bruker AXS Inc.: Madison, WI, USA, 1997–2003. [Google Scholar]
- Sheldrick, G.M. SADABS, Software for Empirical Absorption Corrections; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar]
- Farrugia, L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30, 565. [Google Scholar] [CrossRef]
- Munhá, R.F.; Antunes, M.A.; Alves, L.G.; Veiros, L.F.; Fryzuk, M.D.; Martins, A.M. Structure and Reactivity of Neutral and Cationic trans-N,N′-Dibenzylcyclam Zirconium Alkyl Complexes. Organometallics 2010, 29, 3753–3764. [Google Scholar] [CrossRef]
- Munhá, R.F.; Veiros, L.F.; Duarte, M.T.; Fryzuk, M.D.; Martins, A.M. Synthesis and structural studies of amido, hydrazido and imido zirconium(IV) complexes incorporating a diamido/diamine cyclam-based ligand. Dalton Trans. 2009, 36, 7494–7508. [Google Scholar] [CrossRef] [PubMed]
- Munhá, R.F.; Ballman, J.; Veiros, L.F.; Patrick, B.O.; Fryzuk, M.D.; Martins, A.M. Dinuclear Cationic Zirconium Hydrides Stabilized by the N,N-Dibenzylcyclam Ancillary Ligand. Organometallics 2012, 31, 4937–4940. [Google Scholar] [CrossRef]
- Alves, L.G.; Munhá, R.F.; Martins, A.M. Synthesis and reactivity of cyclam-based Zr(IV) complexes. Inorg. Chim. Acta 2019, 490, 204–214. [Google Scholar] [CrossRef]
Parameters | 2 | 12 |
---|---|---|
Empirical formula | C28H43ClN4OZr | C38H64N4O2Zr |
Formula weight | 578.33 | 700.15 |
Temperature (K) | 150(2) | 150(2) |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, Cc |
a, (Å) | 12.311(1) | 19.485(2) |
b, (Å) | 19.775(2) | 18.109(2) |
c, (Å) | 14.228(2) | 14.165(1) |
α, (°) | 90 | 90 |
β, (°) | 97.297(4) | 130.850(2) |
γ, (°) | 90 | 90 |
Volume (Å3) | 3435.8(7) | 3780.7(6) |
Z | 4 | 4 |
ρcalc (g/cm3) | 1.118 | 1.230 |
μ (mm−1) | 0.420 | 0.327 |
F(000) | 1216 | 1504 |
Crystal size (mm3) | 0.06 × 0.08 × 0.40 | 0.08 × 0.10 × 0.20 |
Θ range for data collection (°) | 2.651 to 25.680 | 2.764 to 25.387 |
Limiting indices | −14 ≤ h ≤ 14 −23 ≤ k ≤ 24 −17 ≤ l ≤ 13 | −23 ≤ h ≤ 23 −18 ≤ k ≤ 21 −17 ≤ l ≤ 17 |
Reflections collected/unique | 19269/6506 [Rint = 0.0969] | 18133/6687 [Rint = 0.0511] |
Completeness to Θ = 25.242 | 99.7% | 99.8% |
Data/restraints/parameters | 6506/24/310 | 6687/2/413 |
Goodness-of-fit on F2 | 0.878 | 1.028 |
Final R indexes [I ≥ 2σ(I)] | R1 = 0.0657, wR2 = 0.1606 | R1 = 0.0463, wR2 = 0.0929 |
Final R indexes [all data] | R1 = 0.1258, wR2 = 0.1808 | R1 = 0.0686, wR2 = 0.0996 |
Largest diff. peak and hole (e Å−3) | 0.932 and −1.383 | 0.438 and −0.456 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, L.G.; Martins, A.M. Synthesis and Characterization of New Cyclam-Based Zr(IV) Alkoxido Derivatives. Reactions 2021, 2, 323-332. https://doi.org/10.3390/reactions2030021
Alves LG, Martins AM. Synthesis and Characterization of New Cyclam-Based Zr(IV) Alkoxido Derivatives. Reactions. 2021; 2(3):323-332. https://doi.org/10.3390/reactions2030021
Chicago/Turabian StyleAlves, Luis G., and Ana M. Martins. 2021. "Synthesis and Characterization of New Cyclam-Based Zr(IV) Alkoxido Derivatives" Reactions 2, no. 3: 323-332. https://doi.org/10.3390/reactions2030021
APA StyleAlves, L. G., & Martins, A. M. (2021). Synthesis and Characterization of New Cyclam-Based Zr(IV) Alkoxido Derivatives. Reactions, 2(3), 323-332. https://doi.org/10.3390/reactions2030021