Integrating NDVI and Multisensor Data with Digital Agriculture Tools for Crop Monitoring in Southern Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Processing and NDVI Calculation
2.3. Field Data and Visual Validation
2.4. Data Analysis
2.5. Digital Agriculture Tools for Monitoring
3. Results and Discussion
3.1. NDVI Analysis for Agricultural Crops
3.1.1. Perennial Crops
3.1.2. Annual Crops
3.1.3. Normalized Difference Vegetation Index Values
3.2. Integrating NDVI Findings with Recent Advances
3.2.1. NDVI and False Color in Perennial and Annual Crops
3.2.2. NDVI with Satellite Images in Agriculture
3.2.3. Integration of National Digital Tools: AgroTag and SATVeg
3.2.4. NDVI Combined with Machine and Deep Learning Approaches
3.2.5. Potential Applications and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EVI | Enhanced vegetation index |
| GEE | Google Earth Engine |
| HLS | Harmonized Landsat and Sentinel-2 |
| ML | Machine Learning |
| NDVI | Normalized Difference Vegetation Index |
| NDRE | Normalized Difference Red Edge |
| NIR | Near-Infrared band |
| SAR | Synthetic Aperture Radar |
| SATVeg | Temporal Vegetation Analysis System |
| SG | Savitzky–Golay |
| SWIR | Shortwave Infrared band |
References
- Meza, F.; Zhang, Y.; Kistner, M.; Anderson, R.G.; Lee, J.; Loescher, H.W. Assessing Temperature-Based Adaptation Limits to Climate Change of Temperate Perennial Fruit Crops. Glob. Change Biol. 2023, 29, 2557–2571. [Google Scholar] [CrossRef] [PubMed]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Furuya, D.E.G.; Bolfe, É.L.; Parreiras, T.C.; Barbedo, J.G.A.; Santos, T.T.; Gebler, L. Combination of Remote Sensing and Artificial Intelligence in Fruit Growing: Progress, Challenges, and Potential Applications. Remote Sens. 2024, 16, 4805. [Google Scholar] [CrossRef]
- EMBRAPA. Center of Science for Development in Digital Agriculture. 2024. Available online: https://www.semear-digital.cnptia.embrapa.br/ (accessed on 7 October 2025).
- FAPESP. Fundação de Amparo à Pesquisa do Estado de São Paulo. Center of Science for Development in Digital Agriculture. 2022—CCD-AD/SemeAr. Available online: https://bv.fapesp.br/en/auxilios/111242/center-of-science-for-development-in-digital-agriculture-ccd-adsemear/ (accessed on 7 October 2025).
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 100005. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- NASA. Harmonized Landsat and Sentinel-2 (HLS). Available online: https://hls.gsfc.nasa.gov/ (accessed on 28 October 2025).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Tech. Rep. 1974, 1, 309–317. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 25 October 2025).
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jiménez-Berni, J.A.; Fereres, E. Using NDVI for the Assessment of Canopy Cover in Agricultural Crops within Modelling Research. Comput. Electron. Agric. 2021, 182, 106038. [Google Scholar] [CrossRef]
- Ali, A.; Rondelli, V.; Martelli, R.; Falsone, G.; Lupia, F.; Barbanti, L. Management Zones Delineation through Clustering Techniques Based on Soil Traits, NDVI Data, and Multiple Year Crop Yields. Agriculture 2022, 12, 231. [Google Scholar] [CrossRef]
- Atanasov, A.I.; Atanasov, A.Z.; Evstatiev, B.I. Application of NDVI for Early Detection of Yellow Rust (Puccinia striiformis). AgriEngineering 2025, 7, 160. [Google Scholar] [CrossRef]
- Orlandella, I.; Smith, K.N.; Belcore, E.; Ferrero, R.; Piras, M.; Fiore, S. Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar. AgriEngineering 2025, 7, 324. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Santos, C.d.O.; Bolfe, É.L.; Sano, E.E.; Leandro, V.B.S.; Bayma, G.; Silva, L.A.P.d.; Furuya, D.E.G.; Romani, L.A.S.; Morton, D. Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages. Remote Sens. 2025, 17, 3168. [Google Scholar] [CrossRef]
- Soares, V.B.; Parreiras, T.C.; Furuya, D.E.G.; Bolfe, É.L.; Nechet, K.d.L. Mapping Banana and Peach Palm in Diversified Landscapes in the Brazilian Atlantic Forest with Sentinel-2. Agriculture 2025, 15, 2052. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Parreiras, T.C.; Silva, L.A.P.d.; Sano, E.E.; Bettiol, G.M.; Victoria, D.d.C.; Sanches, I.D.; Vicente, L.E. Mapping Agricultural Intensification in the Brazilian Savanna: A Machine Learning Approach Using Harmonized Data from Landsat Sentinel-2. ISPRS Int. J. Geo-Inf. 2023, 12, 263. [Google Scholar] [CrossRef]
- da Silva, T.L.; Romani, L.A.S.; Evangelista, S.R.M.; Datcu, M.; Massruhá, S.M.F.S. Drought Monitoring in the Agrotechnological Districts of the Semear Digital Center. Atmosphere 2025, 16, 465. [Google Scholar] [CrossRef]
- Silva, G.B.S.; Bolfe, E.L.; Gava, G.J.C.; Moraes, J.F.L.; Silveira, J.M.C.; De Maria, I.C.; Pires, R.C.M.; Sano, E.E.; Parreiras, T.C.; Santos, C.O.; et al. Diagnóstico Agroambiental dos Municípios com os Distritos Agrotecnológicos do Projeto Semear Digital; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2025; 53p, Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1178722 (accessed on 7 October 2025).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Base Cartográfica Contínua do Brasil ao Milionésimo—BCIM; IBGE: Rio de Janeiro, Brazil, 2022. Available online: https://www.ibge.gov.br/geociencias/downloads-geociencias.html (accessed on 7 October 2025).
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Araújo, L.S.d.; Vicente, L.E.; Manzatto, C.V.; Skorupa, L.A.; Victoria, D.C.; Soares, A.R. AgroTag: Um sistema de coleta, análise e compartilhamento de dados de campo para qualificação do uso e cobertura das terras no Brasil. In Proceedings of the Anais do Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Santos, Brazil, 14–19 April 2019; INPE: São José dos Campos, Brazil, 2019; pp. 451–454. Available online: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1109062 (accessed on 28 October 2025).
- EMBRAPA. AgroTag. Available online: https://www.agrotag.cnptia.embrapa.br (accessed on 10 October 2025).
- Esquerdo, J.C.D.M.; Antunes, J.F.G.; Coutinho, A.C.; Speranza, E.A.; Kondo, A.A.; dos Santos, J.L. SATVeg: A Web-Based Tool for Visualization of MODIS Vegetation Indices in South America. Comput. Electron. Agric. 2020, 175, 105516. [Google Scholar] [CrossRef]
- Ferreira, S.; Sánchez, J.M.; Gonçalves, J.M.; Eugénio, R.; Damásio, H. Remote Sensing-Assisted Estimation of Water Use in Apple Orchards with Permanent Living Mulch. Agronomy 2025, 15, 338. [Google Scholar] [CrossRef]
- Garajeh, M.K.; Salmani, B.; Naghadehi, S.Z.; Goodarzi, H.V.; Khasraei, A. An Integrated Approach of Remote Sensing and Geospatial Analysis for Modeling and Predicting the Impacts of Climate Change on Food Security. Sci. Rep. 2023, 13, 1057. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Vanella, D.; Consoli, S.; Ramírez-Cuesta, J.M.; Tessitori, M. Suitability of the MODIS-NDVI Time-Series for a Posteriori Evaluation of the Citrus Tristeza Virus Epidemic. Remote Sens. 2020, 12, 1965. [Google Scholar] [CrossRef]
- Gupta, H.; Kaur, L.; Asra, M.; Avtar, R.; Reddy, C.S. MODIS NDVI Multi-Temporal Analysis Confirms Farmer Perceptions on Seasonality Variations Affecting Apple Orchards in Kinnaur, Himachal Pradesh. Agriculture 2021, 11, 724. [Google Scholar] [CrossRef]
- Bigolin, T.; Talamini, E. Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate 2024, 12, 42. [Google Scholar] [CrossRef]
- Branco, J.E.H.; Bartholomeu, D.B.; Junior, P.N.A.; Caixeta Filho, J.V. Mutual Analyses of Agriculture Land Use and Transportation Networks: The Future Location of Soybean and Corn Production in Brazil. Agric. Syst. 2021, 194, 103264. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, W.; Rezaei, E.E.; Li, J.; Sun, Z.; Zhang, J. The Optimal Phenological Phase of Maize for Yield Prediction with High-Frequency UAV Remote Sensing. Remote Sens. 2022, 14, 1559. [Google Scholar] [CrossRef]
- Hnizil, O.; Baidani, A.; Khlila, I.; Nsarellah, N.; Laamari, A.; Amamou, A. Integrating NDVI, SPAD, and Canopy Temperature for Strategic Nitrogen and Seeding Rate Management to Enhance Yield, Quality, and Sustainability in Wheat Cultivation. Plants 2024, 13, 1574. [Google Scholar] [CrossRef]
- Farbo, A.; Sarvia, F.; De Petris, S.; Basile, V.; Borgogno-Mondino, E. Forecasting Corn NDVI through AI-Based Approaches Using Sentinel-2 Image Time Series. ISPRS J. Photogramm. Remote Sens. 2024, 211, 244–261. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Yang, Z. Mapping Corn and Soybean Phenometrics at Field Scales over the United States Corn Belt by Fusing Time Series of Landsat 8 and Sentinel-2 Data with VIIRS Data. ISPRS J. Photogramm. Remote Sens. 2022, 186, 55–69. [Google Scholar] [CrossRef]
- Sozzi, M.; Boscaro, D.; Zanchin, A.; Marinello, F.; Tomasi, D. Reducing Within-Vineyard Spatial Variability Through Real-Time Variable-Rate Fertilization: A Case Study in the Conegliano Valdobbiadene Prosecco DOCG Region. AgriEngineering 2025, 7, 280. [Google Scholar] [CrossRef]
- Md-Tahir, H.; Mahmood, H.S.; Husain, M.; Khalil, A.; Shoaib, M.; Ali, M.; Ali, M.M.; Tasawar, M.; Khan, Y.A.; Awan, U.K.; et al. Localized Crop Classification by NDVI Time Series Analysis of Remote Sensing Satellite Data; Applications for Mechanization Strategy and Integrated Resource Management. AgriEngineering 2024, 6, 2429–2444. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Gilani, H.; Ashraf, M.; Iqbal, M.S.; Munir, S. Field Validation of NDVI to Identify Crop Phenological Signatures. Precis. Agric. 2024, 25, 2245–2270. [Google Scholar] [CrossRef]
- Kasimati, A.; Psiroukis, V.; Darra, N.; Kalogrias, A.; Kalivas, D.; Taylor, J.A.; Fountas, S. Investigation of the Similarities between NDVI Maps from Different Proximal and Remote Sensing Platforms in Explaining Vineyard Variability. Precis. Agric. 2023, 24, 1220–1240. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Tsoulias, N.; Saha, K.K.; Zude-Sasse, M. In-Situ Fruit Analysis by Means of LiDAR 3D Point Cloud of Normalized Difference Vegetation Index (NDVI). Comput. Electron. Agric. 2023, 205, 107611. [Google Scholar] [CrossRef]
- Ye, N.; Mai, W.; Qin, F.; Yuan, S.; Liu, B.; Li, Z.; Liu, C.; Wan, F.; Qian, W.; Wu, Z.; et al. Early Detection of Citrus Huanglongbing by UAV Remote Sensing Based on MGA-UNet. Front. Plant Sci. 2025, 16, 1503645. [Google Scholar] [CrossRef]
- Ilniyaz, O.; Kurban, A.; Du, Q. Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods. Remote Sens. 2022, 14, 415. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, B.; Liang, L.; Huang, Y.; Matocha, C.; Lee, C.D.; Sama, M.; Masri, B.E.; Ren, W. Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping Systems of Kentucky. Remote Sens. 2021, 13, 1615. [Google Scholar] [CrossRef]
- Santana, C.T.C.d.; Adami, M.; Prudente, V.H.R.; Garcia, A.D.B.; Caldas, M.M. Using Harmonized Landsat Sentinel-2 Vegetation Indices to Estimate Sowing and Harvest Dates for Corn and Soybeans in Brazil. Remote Sens. 2025, 17, 2927. [Google Scholar] [CrossRef]
- Maranhão, R.L.A.; Caldas, M.M.; Kastens, J.; Watson, J.; Lollato, R.P. Assessing NDVI, Climate, and Management to Predict Winter Wheat Yields at Field Scale in Kansas, USA. Remote Sens. 2025, 17, 3500. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q. Use Time Series NDVI and EVI to Develop Dynamic Crop Growth Metrics for Yield Modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Shi, D.; Nath, A.J. Normalized Difference Red–NIR–SWIR: A New Sentinel-2 Three-Band Spectral Index for Mapping Freshly-Opened Swiddens in the Tropics. Ecol. Inform. 2024, 82, 102775. [Google Scholar] [CrossRef]
- Berra, E.F.; Fontana, D.C.; Yin, F.; Breunig, F.M. Harmonized Landsat and Sentinel-2 Data with Google Earth Engine. Remote Sens. 2024, 16, 2695. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Bolfe, É.L.; Chaves, M.E.D.; Sanches, I.D.; Sano, E.E.; Victoria, D.d.C.; Bettiol, G.M.; Vicente, L.E. Hierarchical Classification of Soybean in the Brazilian Savanna Based on Harmonized Landsat Sentinel Data. Remote Sens. 2022, 14, 3736. [Google Scholar] [CrossRef]
- Geng, G.; Gu, Q.; Zhou, H.; Zhang, B.; He, Z.; Zheng, R. Random Forest Model that Incorporates Solar-Induced Chlorophyll Fluorescence Data Can Accurately Track Crop Yield Variations under Drought Conditions. Ecol. Inform. 2025, 85, 102972. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, H.; Li, Q.; Fu, X.; Li, H. Estimating Canopy Chlorophyll Content of Potato Using Machine Learning and Remote Sensing. Agriculture 2025, 15, 375. [Google Scholar] [CrossRef]
- Lei, L.; Yang, Q.; Yang, L.; Shen, T.; Wang, R.; Fu, C. Deep Learning Implementation of Image Segmentation in Agricultural Applications: A Comprehensive Review. Artif. Intell. Rev. 2024, 57, 149. [Google Scholar] [CrossRef]
- Vera-Esmeraldas, A.; Pizarro-Oteíza, S.; Labbé, M.; Rojo, F.; Salazar, F. UAV-Based Spectral and Thermal Indices in Precision Viticulture: A Review of NDVI, NDRE, SAVI, GNDVI, and CWSI. Agronomy 2025, 15, 2569. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Wang, J.; Yao, Z.; Wang, Y.; Zhao, Y.; Sun, Y.; Wu, F.; Han, D.; Yang, G.; et al. NDVI Estimation Throughout the Whole Growth Period of Multi-Crops Using RGB Images and Deep Learning. Agronomy 2025, 15, 63. [Google Scholar] [CrossRef]











| Crop | Minimum | Maximum | Mean | Median | Std. Dev. |
|---|---|---|---|---|---|
| Apple | 0.13 | 0.96 | 0.6 | 0.6 | 0.14 |
| Grape | 0.20 | 0.94 | 0.7 | 0.7 | 0.12 |
| Soybean | 0.17 | 0.95 | 0.6 | 0.6 | 0.23 |
| Maize | 0.18 | 0.94 | 0.6 | 0.6 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Furuya, D.E.G.; Bolfe, É.L.; Parreiras, T.C.; Soares, V.B.; Gebler, L. Integrating NDVI and Multisensor Data with Digital Agriculture Tools for Crop Monitoring in Southern Brazil. AgriEngineering 2026, 8, 48. https://doi.org/10.3390/agriengineering8020048
Furuya DEG, Bolfe ÉL, Parreiras TC, Soares VB, Gebler L. Integrating NDVI and Multisensor Data with Digital Agriculture Tools for Crop Monitoring in Southern Brazil. AgriEngineering. 2026; 8(2):48. https://doi.org/10.3390/agriengineering8020048
Chicago/Turabian StyleFuruya, Danielle Elis Garcia, Édson Luis Bolfe, Taya Cristo Parreiras, Victória Beatriz Soares, and Luciano Gebler. 2026. "Integrating NDVI and Multisensor Data with Digital Agriculture Tools for Crop Monitoring in Southern Brazil" AgriEngineering 8, no. 2: 48. https://doi.org/10.3390/agriengineering8020048
APA StyleFuruya, D. E. G., Bolfe, É. L., Parreiras, T. C., Soares, V. B., & Gebler, L. (2026). Integrating NDVI and Multisensor Data with Digital Agriculture Tools for Crop Monitoring in Southern Brazil. AgriEngineering, 8(2), 48. https://doi.org/10.3390/agriengineering8020048

