Assessment of Spectral Indices for Detecting Rice Phenological Stages Using Long-Term In Situ Hyperspectral Observations and Sentinel-2 Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.2.1. Hemi-Spherical Spectro-Radiometer (HSSR)
2.2.2. Automatic-Capturing Digital Fish-Eye Camera (ADFC)
2.2.3. In Situ Data Processing
2.3. Satellite Data
2.3.1. Satellite Data Acquisition
2.3.2. Calculation of Spectral Indices (SIs)
2.4. Statistical Analysis
3. Results
3.1. Rice Paddy Phenology
3.2. Spectral Profile of Rice Paddy
3.3. Relation of Spectral Indices (SIs) with Rice Paddy Phenology
3.4. Anomalous Events and Data Artifacts
3.5. Stage-Specific Sensitivity of SIs
3.6. Comparison of SIs from In Situ and Sentinel-2 Data
4. Discussion
4.1. Mechanisms of Spectral Response and Saturation
4.2. Impact of Environmental and Biotic Factors
4.3. Sensitivity, Uncertainty, and Cross-Platform Agreement
4.4. Practical Implications for Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, J.; Hu, T.; Yuan, J.; Liu, Q.; Wang, W.; Liu, J.; Guo, L.; Song, G. Deep-Learning-Based Rice Phenological Stage Recognition. Remote Sens. 2023, 15, 2891. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Moldenhauer, K.E.W.C.; Slaton, N. Rice growth and development. Rice Prod. Handb. 2001, 192, 7–14. [Google Scholar]
- Ling, Q.; Zhang, H.; Ding, Y.; Dai, Q.; Ling, L.; Wang, S.; Xu, M. Precise and quantitative cultivation for high yield in rice. North Rice 2007, 2, 9. [Google Scholar]
- Zheng, H.; Cheng, T.; Yao, X.; Deng, X.; Tian, Y.; Cao, W.; Zhu, Y. Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Res. 2016, 198, 131–139. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L.; Liu, M.; Dong, Y.; Liu, C.; Casa, R.; Pignatti, S.; Huang, W.; Li, Z.; Tian, T.; et al. Accurate Paddy Rice Mapping Based on Phenology-Based Features and Object-Based Classification. Remote Sens. 2024, 16, 4406. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Bryant, C.R.; Senthilnath, J. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Corcione, V.; Nunziata, F.; Mascolo, L.; Migliaccio, M. A study of the use of COSMO-SkyMed SAR PingPong polarimetric mode for rice growth monitoring. Int. J. Remote Sens. 2016, 37, 633–647. [Google Scholar] [CrossRef]
- Dash, J.; Jeganathan, C.; Atkinson, P.M. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sens. Environ. 2010, 114, 1388–1402. [Google Scholar] [CrossRef]
- Cauba, A.G.; Darvishzadeh, R.; Schlund, M.; Nelson, A.; Laborte, A. Estimation of transplanting and harvest dates of rice crops in the Philippines using Sentinel-1 data. Remote Sens. Appl. Soc. Environ. 2025, 37, 101435. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Wu, Z.; Lin, H. Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting. Int. J. Remote Sens. 2012, 33, 1905–1916. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K. Development of a remote sensing-based “Boro” rice mapping system. Remote Sens. 2014, 6, 1938–1953. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Wang, J.; Li, X. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Martínez-Eixarch, M.; Alcaraz, C. Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Res. 2022, 281, 108507. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Li, C.; Teng, X.; Tan, Y.; Zhang, Y.; Zhang, H.; Xiao, D.; Luo, S. Spatio-temporal mapping of leaf area index in rice: Spectral indices and multi-scale texture comparison derived from different sensors. Front. Plant Sci. 2024, 15, 1445490. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Zhao, X.; Nishina, K.; Akitsu, T.K.; Jiang, L.; Masutomi, Y.; Nasahara, K.N. Feature-based algorithm for large-scale rice phenology detection based on satellite images. Agric. For. Meteorol. 2023, 329, 109283. [Google Scholar] [CrossRef]
- Raghavendra, B.R.; Aslam, M.M. Sensitivity of vegetation indices of MODIS data for the monitoring of rice crops in Raichur district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 187–195. [Google Scholar] [CrossRef]
- He, Z.; Li, S.; Wang, Y.; Dai, L.; Lin, S. Monitoring Rice Phenology Based on Backscattering Characteristics of Multi-Temporal RADARSAT-2 Datasets. Remote Sens. 2018, 10, 340. [Google Scholar] [CrossRef]
- AsiaFlux. Available online: http://www.asiaflux.net/ (accessed on 23 August 2025).
- Nasahara, K.N.; Nagai, S. Development of an in situ observation network for terrestrial ecological remote sensing: The Phenological Eyes Network (PEN). Ecol. Res. 2015, 30, 211–223. [Google Scholar] [CrossRef]
- Phenological Eyes Network (PEN). Available online: http://www.pheno-eye.org/ (accessed on 10 August 2025).
- Japan Long Term Ecological Research Network (JaLTER). Available online: http://www.jalter.org/ (accessed on 10 August 2025).
- Mizuno, Y.; Sasagawa, T.; Takahashi, Y.; Ide, R.; Kobayashi, T.; Muraoka, H.; Takagi, K.; Ono, K.; Nasahara, K.N. Assessment of the Applicability of Hue from In Situ Spectral Measurements to Remote Sensing of Plant Phenology. Remote Sens. 2025, 17, 2767. [Google Scholar] [CrossRef]
- Ide, R.; Hirose, Y.; Oguma, H.; Saigusa, N. Development of a masking device to exclude contaminated reflection during tower-based measurements of spectral reflectance from a vegetation canopy. Agric. For. Meteorol. 2016, 223, 141–150. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Murakami, K.; Nagai, S. Evaluation of Sub-Pixel Cloud Noises on MODIS Daily Spectral Indices Based on in situ Measurements. Remote Sens. 2011, 3, 1644–1662. [Google Scholar] [CrossRef]
- Sasagawa, T.; Akitsu, T.K.; Ide, R.; Takagi, K.; Takanashi, S.; Nakaji, T.; Nasahara, K.N. Accuracy Assessment of Photochemical Reflectance Index (PRI) and Chlorophyll Carotenoid Index (CCI) Derived from GCOM-C/SGLI with In Situ Data. Remote Sens. 2021, 14, 5352. [Google Scholar] [CrossRef]
- Jw, R. Monitoring vegetation systems in the Great Plains with ERTS. In Third NASA Earth Resources Technology Satellite Symposium; NASA: Washington, DC, USA, 1973; Volume 1, pp. 309–317. [Google Scholar]
- Kumar, S.; Arya, S.; Jain, K. A SWIR-based vegetation index for change detection in land cover using multi-temporal Landsat satellite dataset. Int. J. Inf. Technol. 2022, 14, 2035–2048. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral considerations for modeling yield of canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, B., III; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Morales, A.; Berjón, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, J.; Zhang, G.; Yang, J.; Liu, R.; Wu, B.; Xiao, X. Improved phenology-based rice mapping algorithm by integrating optical and radar data. Remote Sens. Environ. 2024, 315, 114460. [Google Scholar] [CrossRef]
- Olsen, J.L.; Ceccato, P.; Proud, S.R.; Fensholt, R.; Grippa, M.; Mougin, E.; Ardö, J.; Sandholt, I. Relation between Seasonally Detrended Shortwave Infrared Reflectance Data and Land Surface Moisture in Semi-Arid Sahel. Remote Sens. 2013, 5, 2898–2927. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Shinohara, Y. Influence of different rice growth stages on NDVI in the latter half of growth using UAV-mounted multispectral sensor. J. Jpn. Soc. Irrig. Drain. Rural. Eng. 2022, 91, II_9–II_16. [Google Scholar]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GISci. Remote Sens. 2018, 55, 659–677. [Google Scholar] [CrossRef]
- Burkart, A.; Hecht, V.L.; Kraska, T.; Rascher, U. Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precis. Agric. 2018, 19, 134–146. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, J.; Cai, Z.; Yang, J.; Zhou, W.; Hu, Q.; Wang, C.; You, L.; Xu, B. A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data. J. Integr. Agric. 2024, 23, 1164–1178. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Luo, Y.; Cao, J.; Zhang, L.; Zhang, J.; Li, Z. The RapeseedMap10 database: Annual maps of rapeseed at a spatial resolution of 10 m based on multi-source data. Earth Syst. Sci. Data 2021, 13, 2857–2874. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Taymans, M.; Lemoine, G.; Ceglar, A.; Yordanov, M.; van der Velde, M. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and-2 time series. Remote Sens. Environ. 2020, 239, 111660. [Google Scholar] [CrossRef]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens. 2009, 30, 4401–4425. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
- D’Odorico, P.; Gonsamo, A.; Damm, A.; Schaepman, M.E. Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1336–1348. [Google Scholar] [CrossRef]

















| Band | Electromagnetic Region | Center Wavelength [nm] | Spatial Resolution [m] |
|---|---|---|---|
| B1 | Coastal aerosol | 443 | 60 |
| B2 | Blue | 490 | 10 |
| B3 | Green | 560 | 10 |
| B4 | Red | 665 | 10 |
| B5 | Red Edge 1 | 705 | 20 |
| B6 | Red Edge 2 | 740 | 20 |
| B7 | Red Edge 3 | 783 | 20 |
| B8 | NIR (Near-Infrared) | 833 | 10 |
| B8A | Red Edge 4 | 865 | 20 |
| B9 | Water vapor | 945 | 60 |
| B10 | SWIR—Cirrus | 1375 | 60 |
| B11 | SWIR 1 | 1610 | 20 |
| Year | Satellite SRF | In Situ Time Filter | Cloud Prob. | Valid Pairs (N) |
|---|---|---|---|---|
| 2019 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 30 |
| 2020 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 17 |
| 2021 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 22 |
| 2022 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 21 |
| 2023 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 30 |
| 2024 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 23 |
| 2025 | Sentinel-2A v4.0 | 09:00–14:58 | <20% | 26 |
| Total | – | – | – | 169 |
| Year | Vegetative Phase (DOY) | Reproductive Phase (DOY) | Ripening Phase (DOY) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Transplanting | Tillering | Max Tillering | Panicle Ini. | Booting | Heading | Flowering | Milk | Dough | Mature | Harvest | |
| 2025 | 123 | 143 | 176 | 189 | 195 | 207 | 215 | 221 | 228 | 240 | 252 |
| 2024 | 123 | 140 | 170 | 186 | 193 | 208 | 214 | 220 | 228 | 240 | 254 |
| 2023 | 122 | 141 | 179 | 187 | 193 | 205 | 213 | 218 | 226 | 237 | 255 |
| 2022 | 122 | 140 | 178 | 189 | 194 | 206 | 212 | 217 | 224 | 235 | 251 |
| 2021 | 122 | 139 | 181 | 191 | 197 | 204 | 215 | 221 | 228 | 238 | 251 |
| 2020 | 123 | 138 | 175 | 188 | 196 | 212 | 217 | 223 | 230 | 237 | 248 |
| 2019 | 122 | 137 | 175 | 185 | 192 | 209 | 215 | 222 | 229 | 238 | 249 |
) and failed detection by a red cross (
).
) and failed detection by a red cross (
).| Phenological Stage | Spectral Indices (SIs) | |||||
|---|---|---|---|---|---|---|
| NDVI | SNDVI | GRVI | Hue | EVI | NDYI | |
| Transplanting | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Tillering | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Maximum Tillering | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Panicle Initiation | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Booting | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Heading | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Flowering | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Milk | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Dough | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| Maturing | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sarker, M.M.; Mizuno, Y.; Ono, K.; Kobayashi, T.; Nasahara, K.N. Assessment of Spectral Indices for Detecting Rice Phenological Stages Using Long-Term In Situ Hyperspectral Observations and Sentinel-2 Data. AgriEngineering 2026, 8, 14. https://doi.org/10.3390/agriengineering8010014
Sarker MM, Mizuno Y, Ono K, Kobayashi T, Nasahara KN. Assessment of Spectral Indices for Detecting Rice Phenological Stages Using Long-Term In Situ Hyperspectral Observations and Sentinel-2 Data. AgriEngineering. 2026; 8(1):14. https://doi.org/10.3390/agriengineering8010014
Chicago/Turabian StyleSarker, Md Manik, Yuki Mizuno, Keisuke Ono, Toshiyuki Kobayashi, and Kenlo Nishida Nasahara. 2026. "Assessment of Spectral Indices for Detecting Rice Phenological Stages Using Long-Term In Situ Hyperspectral Observations and Sentinel-2 Data" AgriEngineering 8, no. 1: 14. https://doi.org/10.3390/agriengineering8010014
APA StyleSarker, M. M., Mizuno, Y., Ono, K., Kobayashi, T., & Nasahara, K. N. (2026). Assessment of Spectral Indices for Detecting Rice Phenological Stages Using Long-Term In Situ Hyperspectral Observations and Sentinel-2 Data. AgriEngineering, 8(1), 14. https://doi.org/10.3390/agriengineering8010014

