Effects of Hole Irrigation Device Parameters on Soil Water Characteristics Under Different Biogas Slurry Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Experiments
2.1.1. Experimental Materials
2.1.2. Experimental and Simulation Design
2.1.3. Measurement
2.2. Numerical Simulation Experiments
2.2.1. Governing Equation of Soil Water Movement
2.2.2. Initial and Boundary Conditions
2.2.3. Model Parameters
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Verification for Numerical Simulation
3.2. Effects of Hole Irrigation Parameters on Cumulative Infiltration
3.3. Effect of Different Factors on the Migration of Wetting Front
3.3.1. Effect of Biogas Slurry Ratio on Soil Wetting Front Migration Distance
3.3.2. Effect of Hole Diameter on Soil Wetting Front Migration Distance
3.3.3. Effect of Hole Depth on Soil Wetting Front Migration Distance
3.4. Establishment and Evaluation of Soil Wetting Front Migration Distance Model for Biogas Slurry Hole Irrigation
3.4.1. Establishment of Soil Wetting Front Migration Distance Model for Biogas Slurry Hole Irrigation
3.4.2. Evaluation of Soil Wetting Front Migration Distance Model for Biogas Slurry Hole Irrigation
3.5. Establishment and Evaluation of Soil Cumulative Infiltration Model for Biogas Slurry Hole Irrigation
3.5.1. Establishment of Soil Cumulative Infiltration Model for Biogas Slurry Hole Irrigation
3.5.2. Evaluation of Soil Cumulative Infiltration Model for Biogas Slurry Hole Irrigation
3.6. Limitations of the Current Study and Future Outlook
4. Conclusions
- (1)
- The constructed hole irrigation HYDRUS model more accurately describes the water transport characteristics of the biogas slurry hole irrigation, expanding the application scenario of the HYDRUS model.
- (2)
- The infiltration process of biogas slurry is greatly affected by its ratio, hole diameters and hole depths. Its stable seepage rate is strongly power-law related to pore size and depth (R2 ≥ 0.98). Meanwhile, the lateral and vertical migration distance of the soil wetting front exhibits a robust power function relationship with stable infiltration rate and infiltration time.
- (3)
- The soil wetting front curve under biogas slurry hole irrigation can be described using an elliptic curve equation. Additionally, the cumulative infiltration of the soil irrigated with biogas slurry through holes exhibited a linear relationship with the soil wetting area.
- (4)
- The established wetting front migration distances model and cumulative infiltration model under biogas slurry hole irrigation demonstrated high reliability and accurately depicted the variations in hole irrigation parameters and biogas slurry ratios for soil moisture dynamics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Song, Y.J.; Wang, G.C.; Li, R.; Chen, G.Y. Research progress of biogas slurry treatment and resource utilization. Trans. Chin. Soc. Agric. Eng. 2021, 37, 237–250. [Google Scholar] [CrossRef]
- Tang, J.; Wang, W.; Pan, F.F.; Yin, J.Z.; Zhang, X.Z.; Wu, D.F.; Meng, X.F.; Du, Y.M. The effects of biogas slurry irrigation on aggregation and stability of fluvo-aquic soil in Huang-Huai-Hai Plain. J. Irrig. Drain. Eng. 2022, 41, 10–17. [Google Scholar] [CrossRef]
- Wang, H.T.; Qiu, X.F.; Liang, X.Y.; Wang, H.; Wang, H.D. Biogas slurry change the transport and distribution of soil water under drip irrigation. Agric. Water Manag. 2024, 294, 108719. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.T.; Liang, X.Y.; Wang, J.D.; Qiu, X.F.; Wang, C.J. Replacing chemical fertilizers with biogas slurry is an environment friendly strategy to reduce the risk of soil nitrogen leaching: Evidence from the HYDRUS model simulation. Agric. Ecosyst. Environ. 2024, 369, 109043. [Google Scholar] [CrossRef]
- Nduka, B.; Ogunlade, M.; Adeniyi, D.; Oyewusi, I.; Ugioro, O.; Mohammed, I. The influence of organic manure and biochar on cashew seedling performance, soil properties and status. Agric. Sci. 2019, 10, 110–120. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Domingo-Olivé, F.; Bosch-Serra, À.D.; Poch, R.M.; Boixadera, J. Dairy cattle manure effects on soil quality: Porosity, earthworms, aggregates and soil organic carbon fractions. Land Degrad. Dev. 2016, 27, 1753–1762. [Google Scholar] [CrossRef]
- Chen, S. Effects of Biochar on Water Transport of Red Soil with Biogas Irrigation. Master’s Thesis, Agricultural University of Hunan, Changsha, China, 2023. [Google Scholar] [CrossRef]
- Xu, C.M.; Tian, Y.; Sun, Y.X.; Dong, L.M. Effects of biogas slurry irrigation on growth, photosynthesis, and nutrient status of perilla frutescens seedlings. Commun. Soil Sci. Plant Anal. 2013, 44, 3381–3390. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Zhao, S.F.; Wang, Y.Q.; Fu, L.Y.; Yao, L. Effect of biogas slurry on water footprint in cauliflower production. In Proceedings of the 6th International Conference on Advances in Energy Resources and Environment Engineering, Chongqing, China, 20–22 November 2020; p. 012111. [Google Scholar] [CrossRef]
- Juan, J.X.; Khalid, M.; Hong, Z.; Yang, L.Q.; Bilal, M.; Gao, Z.L.; Tang, D.Q.; Huang, D.F. Impact of biogas slurry fertilizer on growth, quality and biochemical characteristics of ornamental of ornamental lettuce’ biscia rossa. Pak. J. Bot. 2018, 50, 123–129. [Google Scholar]
- Zhang, X.; Zhao, J.; Yuan, G.; Tang, Y.F.; Han, J.G. Effects of repeated biogas slurry application on soil quality and bacterial community composition under wheat-rice rotation on a coastal reclaimed farmland. Fresenius Environ. Bull. 2021, 30, 7767–7779. [Google Scholar]
- Zeng, W.S.; Qiu, J.R.; Wang, D.H.; Wu, Z.Y.; He, L.T. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation. Sci. Total Environ. 2022, 810, 151294. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.P.; Hou, J.M.; Li, X.Y.; Chai, J.; Yin, Y.L.; Zheng, J.; Kang, Y.D. A generalized Ross infiltration model and the application on hole irrigation based on the biconjugate gradient stabilized algorithm. Adv. Water Resour. 2022, 163, 104181. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.Y.; Zhang, Y.N.; Zhang, P.P.; Wang, J. Effects of digestate application on tomato growth, yield, quality, and soil nitrogen content via integrated hole irrigation. J. Biobased Mater. Bioenergy 2019, 13, 620–634. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.N.; Wang, Y.; Zhang, E.J. Infiltration characteristics and Philip model fitting analysis of biogas slurry hole-irrigation. Agric. Res. Arid Areas 2019, 37, 144–150. [Google Scholar] [CrossRef]
- Pan, Z.P.; Tong, Y.; Hou, J.M.; Zheng, J.; Kang, Y.D.; Wang, Y.; Cao, C.C. Hole irrigation process simulation using a soil water dynamical model with parameter inversion method. Agric. Water Manag. 2021, 245, 106542. [Google Scholar] [CrossRef]
- Huang, S.H.; Zhao, L.; Zhang, T.G.; Qin, M.H.; Yin, T.; Liu, Q.; Li, H. Root Zone Water Management Effects on Soil Hydrothermal Properties and Sweet Potato Yield. Plants 2024, 13, 1561. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Fan, Y.; Li, S.; Cheng, L.; Zhang, L.; Xi, H.; Qiu, R.; Liu, P. Partitioning of available energy in canopy and soil surface in croplands with different irrigation methods. Agric. Water Manag. 2023, 288, 108475. [Google Scholar] [CrossRef]
- Tmjima, R. Importance of individual root traits to understand crop root system in agronomic and environmental contexts. Breed. Sci. 2021, 71, 13–19. [Google Scholar] [CrossRef]
- Zhuge, Y.P.; Zhang, X.D.; Zhang, Y.L.; Li, J.; Yang, L.J.; Huang, Y.; Liu, M.D. Tomato Root Response to Subsurface Drip Irrigation. Pedosphere 2004, 14, 205–212. [Google Scholar]
- Kandelous, M.M.; Šimůnek, J. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrig. Sci. 2010, 28, 435–444. [Google Scholar] [CrossRef]
- Kandelous, M.M.; Šimůnek, J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manag. 2010, 97, 1070–1076. [Google Scholar] [CrossRef]
- Nie, W.B.; Nie, K.K.; Li, Y.B.; Ma, X.Y. HYDRUS-2D simulations of nitrate nitrogen and potassium transport characteristics under fertilizer solution infiltration of furrow irrigation. Water Supply 2021, 21, 2665–2680. [Google Scholar] [CrossRef]
- Grecco, K.L.; de Miranda, J.H.; Silveira, L.K.; Van Genuchten, M.T. HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane. Agric. Water Manag. 2019, 221, 334–347. [Google Scholar] [CrossRef]
- Sun, X.Y.; Tong, J.X.; Liu, C.; Ma, Y.B. Using HYDRUS-2D model to simulate the water flow and nitrogen transport in a paddy field with traditional flooded irrigation. Environ. Sci. Pollut. Res. 2022, 29, 32894–32912. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Li, D.F. Comparison of different approaches for estimating soil water characteristic curves from saturation to oven dryness. J. Hydrol. 2019, 577, 123971. [Google Scholar] [CrossRef]
- Jury, W.A.; Gardner, W.R.; Gardner, W.H. Soil Physics, 5th ed.; John Wiley & Sons: New York, NY, USA, 1991; pp. 27–53. [Google Scholar]
- Zhao, W.X.; Zhang, Z.H.; Cai, H.J.; Xie, H.X. Characteristic parameters of soil wetted volume under indirect subsurface drip irrigation. Trans. Chin. Soc. Agric. Eng. 2010, 26, 87–92. [Google Scholar] [CrossRef]
- Sun, J.X. Numerical Simulation of Biogas Slurry Seepage and Diffusion in Soil. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2022. [Google Scholar]
- Zhong, Y.; Fei, L.J.; Zhu, S.J.; Kang, S.X.; Liu, L.H.; Hao, K.; Jie, F.L. Infiltration characteristics of muddy water film-hole irrigation and formation characteristics of dense layers. J. Soil Water Conserv. 2022, 36, 238–246, 254. [Google Scholar] [CrossRef]
- Fei, L.J.; Wang, J.H.; Jin, S.J. Free Infiltration Characteristics of Muddy Water Film Hole Irrigation with Different Film Hole Diameters. Trans. Chin. Soc. Agric. Mach. 2016, 47, 172–178. [Google Scholar]
- Chen, W.W.; Jia, Q.Q.; Liu, P.; Tong, Y.M. Determining the unsaturated hydraulic conductivity of remoulded loess with filter paper method and soil column seepage test. Environ. Earth Sci. 2021, 80, 808. [Google Scholar] [CrossRef]
- Leisenring, M.; Moradkhani, H. Snow water equivalent prediction using Bayesian data assimilation methods. Stoch. Environ. Res. Risk Assess. 2011, 25, 253–270. [Google Scholar] [CrossRef]
- Drewry, J.J.; Carrick, S.; Penny, V.; Dando, J.L.; Koele, N. Effect of irrigation on soil physical properties on temperate pastoral farms: A regional New Zealand study. Soil Res. 2022, 60, 760–771. [Google Scholar] [CrossRef]
- Assouline, S. A Simple Method to Design Irrigation Rate and Duration and Improve Water Use Efficiency. Water Resour. Res. 2019, 55, 6295–6301. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Liu, P.F.; Montazer, A.; Paw, U.K.T.; Hu, Y.G. Soil Water Infiltration Model for Sprinkler Irrigation Control Strategy: A Case for Tea Plantation in Yangtze River Region. Agriculture 2019, 9, 206. [Google Scholar] [CrossRef]
- Fan, Y.W.; Gong, J.G.; Wang, Y.; Shao, X.X.; Zhao, T. Application of Philip infiltration model to film hole irrigation. Water Supply 2019, 19, 978–985. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, L.J.; Li, Y.B. Infiltration characteristics of film hole irrigation under the influence of multiple factors. Irrig. Drain. 2020, 69, 417–426. [Google Scholar] [CrossRef]
Particle size/mm | <2.000 | <1.000 | <0.500 | <0.250 | <0.100 | <0.075 | <0.005 |
Mass fraction/% | 100.000 | 99.995 | 99.930 | 99.885 | 99.789 | 99.764 | 3.000 |
Ratio of Biogas Slurry | θs (cm3 cm−3) | θr (cm3 cm−3) | ɑ (1 cm−1) | n (-) | Ks (cm min−1) |
---|---|---|---|---|---|
B0 | 0.3722 | 0.0510 | 0.0112 | 1.6688 | 0.00360 |
B1:8 | 0.3886 | 0.0549 | 0.0097 | 1.7223 | 0.00143 |
B1:6 | 0.3894 | 0.0554 | 0.0095 | 1.7469 | 0.00105 |
B1:4 | 0.3909 | 0.0580 | 0.0093 | 1.7551 | 0.00080 |
Ratio of Biogas Slurry | H/cm | e/(-) | f/(-) | R2 |
---|---|---|---|---|
0 | 8 | 1.2913 | 0.2547 | 0.9900 |
10 | 1.5836 | 0.2474 | 0.9838 | |
12 | 1.9880 | 0.2283 | 0.9950 | |
14 | 2.3843 | 0.2266 | 0.9889 | |
1:8 | 8 | 0.4024 | 0.2595 | 0.9873 |
10 | 0.5051 | 0.2447 | 0.9870 | |
12 | 0.6363 | 0.2321 | 0.9971 | |
14 | 0.7847 | 0.2205 | 0.9815 | |
1:6 | 8 | 0.3791 | 0.2576 | 0.9857 |
10 | 0.4708 | 0.2440 | 0.9877 | |
12 | 0.5917 | 0.2309 | 0.9969 | |
14 | 0.7135 | 0.2270 | 0.9811 | |
1:4 | 8 | 0.3152 | 0.2092 | 0.9882 |
10 | 0.3502 | 0.2196 | 0.9899 | |
12 | 0.3783 | 0.2334 | 0.9971 | |
14 | 0.4707 | 0.2183 | 0.9887 |
Ratio of Biogas Slurry | D/cm | g/(-) | h/(-) | R2 |
---|---|---|---|---|
0 | 3 | 0.1947 | 1.0418 | 0.9951 |
5 | 0.2223 | 1.0283 | 0.9957 | |
7 | 0.2738 | 0.9766 | 0.9940 | |
9 | 0.2855 | 0.9926 | 0.9944 | |
1:8 | 3 | 0.0531 | 1.1088 | 0.9947 |
5 | 0.0591 | 1.1073 | 0.9961 | |
7 | 0.0751 | 1.0403 | 0.9917 | |
9 | 0.0808 | 1.0444 | 0.9951 | |
1:6 | 3 | 0.0546 | 1.0661 | 0.9951 |
5 | 0.0601 | 1.0687 | 0.9961 | |
7 | 0.0756 | 1.0075 | 0.9906 | |
9 | 0.0804 | 1.0154 | 0.9942 | |
1:4 | 3 | 0.0544 | 1.0045 | 0.9908 |
5 | 0.0572 | 1.0173 | 0.9867 | |
7 | 0.0639 | 0.9942 | 0.9881 | |
9 | 0.0644 | 1.0045 | 0.9908 |
D/cm | NSE | RMSE | PBIAS | MAE |
---|---|---|---|---|
3 | 0.9992 | 0.0281 | −0.2376 | 0.3196 |
5 | 0.9996 | 0.0010 | 0.0087 | 0.4667 |
7 | 0.9763 | 0.1264 | −0.2235 | 0.6611 |
t (min) | B0D5H10 | t (min) | B1:6D3H12 |
---|---|---|---|
7 | 0.9566 | 20 | 0.9926 |
26 | 0.9891 | 74 | 0.9890 |
54 | 0.9950 | 158 | 0.9961 |
90 140 | 0.9919 0.9961 | 264 416 | 0.9880 0.9900 |
Ratio of Biogas Slurry | NSE | RMSE | PBIAS | MAE |
---|---|---|---|---|
B0 | 0.9990 | 0.5913 | 0.0673 | 1.3087 |
B1:8 | 0.9817 | 0.2293 | −0.0262 | 1.3894 |
B1:6 | 0.9993 | 0.8626 | 0.0982 | 1.3816 |
B1:4 | 0.9997 | 0.8825 | −0.1482 | 2.6522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, P.; Zheng, J.; Wang, Y.; Wu, Y. Effects of Hole Irrigation Device Parameters on Soil Water Characteristics Under Different Biogas Slurry Ratios. AgriEngineering 2025, 7, 199. https://doi.org/10.3390/agriengineering7070199
Xiang P, Zheng J, Wang Y, Wu Y. Effects of Hole Irrigation Device Parameters on Soil Water Characteristics Under Different Biogas Slurry Ratios. AgriEngineering. 2025; 7(7):199. https://doi.org/10.3390/agriengineering7070199
Chicago/Turabian StyleXiang, Peng, Jian Zheng, Yan Wang, and You Wu. 2025. "Effects of Hole Irrigation Device Parameters on Soil Water Characteristics Under Different Biogas Slurry Ratios" AgriEngineering 7, no. 7: 199. https://doi.org/10.3390/agriengineering7070199
APA StyleXiang, P., Zheng, J., Wang, Y., & Wu, Y. (2025). Effects of Hole Irrigation Device Parameters on Soil Water Characteristics Under Different Biogas Slurry Ratios. AgriEngineering, 7(7), 199. https://doi.org/10.3390/agriengineering7070199