Bale Ensiling Preserves Nutritional Composition and Phenolic Compounds of Red Grape Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Microbiological Determinations
2.3. Chemical Analysis
2.3.1. Quantification of Fermentation Products (Sugars, Ethanol, and Organic Acids)
2.3.2. Assessment of Physicochemical Properties
2.3.3. Antioxidant Capacity and Polyphenolic Compounds
2.3.4. Lipid Profile
2.4. Statistical Analysis
3. Results
3.1. Microbiological Analyses
3.2. Fermentation Products
3.3. Chemical–Physical Parameters
3.4. Antioxidant Capacity and Polyphenolic Compounds
3.5. Lipid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) |
ADF | Acid detergent fiber |
ADL | Acid detergent lignin |
ALA | Alpha-linolenic acid |
AOAC | Association Of Analytical Communities |
CP | Crude protein |
DM | Dry matter |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
EC | European Commission |
EE | Ether extract |
FAME | Fatty Acid Methyl Ester |
FM | Fresh matter |
HLPC | High-Liquid-Pressure Chromatography |
LA | Linoleic acid |
LAB | Lactic acid bacteria |
LCFA | Long-chain fatty acid |
MUFA | Monounsaturated fatty acid |
NDF | Neutral detergent fiber |
OBCFAs | Odd- and branched-chain fatty acids |
POD | Protected Origin Denomination |
PUFA | Polyunsaturated fatty acid |
SCFA | Short-chain fatty acid |
SFA | Saturated fatty acid |
TFA | Trans-fatty acid |
TI | Thrombogenicity index |
UFA | Unsaturated fatty acid |
VFA | Volatile fatty acid |
References
- Sokač Cvetnić, T.; Gunjević, V.; Damjanović, A.; Pušek, A.; Jurinjak Tušek, A.; Jakovljević, T.; Radojičić Redovniković, I.; Uher, D. Monitoring of chemical and fermentative characteristics during different treatments of grape pomace silage. Agriculture 2023, 13, 2264. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef] [PubMed]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Massaro Júnior, F.L.; Bumbieris Junior, V.; Zanin, E.; Mizubuti, I.Y. Effect of storage time and use of additives on the quality of grape pomace silages. J. Food Process. Preserv. 2020, 44, e14373. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Zhao, S.; Wang, Y. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition. Front. Microbiol. 2020, 11, 1989. [Google Scholar] [CrossRef]
- Ke, W.C.; Yang, F.Y.; Undersander, D.J.; Guo, X.S. Fermentation characteristics, aerobic stability, proteolysis and lipid composition of alfalfa silage ensiled with apple or grape pomace. Anim. Feed Sci. Technol. 2015, 202, 12–19. [Google Scholar] [CrossRef]
- De Bellis, P.; Maggiolino, A.; Albano, C.; De Palo, P.; Blando, F. Ensiling grape pomace with and without addition of a Lactiplantibacillus plantarum strain: Effect on polyphenols and microbiological characteristics, in vitro nutrient apparent digestibility, and gas emission. Front. Vet. Sci. 2022, 9, 808293. [Google Scholar] [CrossRef]
- Díaz, J.R.; Fenoll, J.; Fenoll, A.; Romero, G.; Sendra, E. Procedimiento de Fabricación de Microsilos a Partir de Alcachofas (Cynara scolymus L.) para la Alimentación Animal. U.S. Patent ES2607220B1, 17 January 2018. [Google Scholar]
- Arias, C.; Oliete, B.; Seseña, S.; Jiménez, L.; Palop, L.; Pérez-Guzmán, M.D.; Arias, R. Importance of on-farm management practices on lactate-fermenting Clostridium spp. spore contamination of total mixed ration of Manchega ewe feeding. Small Rumin. Res. 2016, 139, 39–45. [Google Scholar] [CrossRef]
- Feng-Xia, L.; Shu-Fang, F.; Xiu-Fang, B.; Fang, C.; Xiao-Jun, L.; Xiao-Song, H.; Ji-Hong, W. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Kılıç, A. Silo Feed (Teaching, Learning and Application Recommendations); Bilgehan Printing House: Izmir, Turkey, 1986. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- ISO 10520:1997; Native starch—Determination of starch content—Ewers polarimetric method. International Organization for Standardization: Geneva, Switzerland, 1997.
- Leite, A.V.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Pastore, G.M.; Maróstica Júnior, M.R. Antioxidant Potential of Rat 706 Plasma by Administration of Freeze-Dried Jaboticaba Peel (Myrciaria jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Moore, J.; Yu, L. Relative High-Throughput DPPH Radical Scavenging Capacity Assay. J. Agric. Food Chem. 2006, 54, 7429–7436. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic Composition, Antioxidant Activity, and Polyphenol Oxidase (PPO) Activity of Quince (Cydonia oblonga Miller) Varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluación de catalizadores ácidos y básicos en la metilación de ácidos grasos de la leche y el rumen, con especial énfasis en dienos conjugados y ácidos grasos trans totales. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Muck, R.E. Fermentation Characteristics of Round-Bale Silages; USDA, Agricultural Research Service, US Dairy Forage Research Center: Madison, WI, USA, 2006. [Google Scholar]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Marlow Bottom, UK, 1991. [Google Scholar]
- D’Alessandro, A.G.; Dibenedetto, R.S.; Skoufos, I.; Martemucci, G. Potential use of wheat straw, grape pomace, olive mill wastewater and cheese whey in mixed formulations for silage production. Agronomy 2023, 13, 2323. [Google Scholar] [CrossRef]
- Schnürer, J.; Magnusson, J. Antifungal Lactic Acid Bacteria as Biopreservatives. Trends Food Sci. Technol. 2005, 16, 70–78. [Google Scholar] [CrossRef]
- Zheng, M.; Niu, D.; Zuo, S.; Mao, P.; Meng, L.; Xu, C. The Effect of Cultivar, Wilting, and Storage Period on Fermentation and the Clostridial Community of Alfalfa Silage. Ital. J. Anim. Sci. 2018, 17, 336–346. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.; Sheperd, A.C.; Smagala, A.M.; Endres, K.M.; Bessett, C.A.; Ranjit, N.K.; Glancey, J.L. The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration. J. Dairy Sci. 1998, 81, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of ensiling. In Silage Science and Technology; Agron. Monogr. 42; ASA, CSSA, and SSSA: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar]
- Megías, M.D.; Meneses, M.; Madrid, J.; Hernández, F.; Martínez-Teruel, A.; Cano, J.A. Nutritive, fermentative and environmental characteristics of silage of two industrial broccoli (Brassica oleracea, var. Itálica) by-products for ruminant feed. Int. J. Agric. Biol. 2014, 16, 307–313. [Google Scholar]
- Sun, Q.; Gao, F.; Yu, Z.; Tao, Y.; Zhao, S.; Cai, Y. Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives. Anim. Sci. J. 2011, 82, 811–819. [Google Scholar] [CrossRef]
- Kung, L., Jr. Understanding the Biology of Silage Preservation to Maximize Quality and Protect the Environment. In Proceedings of the California Alfa & Forage Symposium and Corn/Cereal Silage Conference, Visalia, CA, USA, 1–2 December; 2010; pp. 1–14. [Google Scholar]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of Lactic Acid Bacteria and Molasses Additives on the Microbial Community and Fermentation Quality of Soybean Silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Arias Carrasquillo, F. Fermentative Characteristics and Aerobic Stability of Two Tropical Corn Varieties and Guinea Grass Silage at Different Maturity Stages. Master’s Thesis, University of Puerto Rico, Mayagüez, Puerto Rico, 1998. [Google Scholar]
- Der Bedrosian, M.C.; Nestor, K.E., Jr.; Kung, L., Jr. The Effects of Hybrid, Maturity, and Length of Storage on the Composition and Nutritive Value of Corn Silage. J. Dairy Sci. 2012, 95, 5115–5126. [Google Scholar] [CrossRef]
- Zhong, R.; Zhao, C.; Feng, P.; Wang, Y.; Zhao, X.; Luo, D.; Fang, Y. Effects of feeding ground versus pelleted total mixed ration on digestion, rumen function and milk production performance of dairy cows. Int. J. Dairy Technol. 2020, 73, 22–30. [Google Scholar] [CrossRef]
- Driehuis, F.; van Wikselaar, P.V. The occurrence and prevention of ethanol fermentation in high-dry-matter grass silage. J. Sci. Food Agric. 2000, 80, 711–718. [Google Scholar] [CrossRef]
- Rodríguez, G.; Carballo, L.M. Production of Acetic Acid from Ethanol in a Single Step and Vapor Phase; Department of Chemical Engineering, National University of Colombia: Bogota, Colombia, 1992. [Google Scholar] [CrossRef]
- Li, M.; Su, J.; Yang, H.; Feng, L.; Wang, M.; Xu, G.; Shao, J.; Ma, C. Grape Tartaric Acid: Chemistry, Function, Metabolism, and Regulation. Horticulturae 2023, 9, 1173. [Google Scholar] [CrossRef]
- Shilo, M.; Stanier, R.Y. The Utilization of the Tartaric Acids by Pseudomonads. J. Gen. Microbiol. 1957, 16, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yuan, X.; Li, J.; Wang, S.; Dong, Z.; Shao, T. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn-based total mixed ration silage. J. Integr. Agric. 2017, 16, 1592–1600. [Google Scholar] [CrossRef]
- Shinners, K.J.; Wepner, A.D.; Muck, R.E.; Weimer, P.J. Aerobic and Anaerobic Storage of Single-Pass Chopped Corn Stover. BioEnergy Res. 2011, 4, 61–75. [Google Scholar] [CrossRef]
- Kulyk, M.F.; Zhukov, V.P.; Obertiukh, Y.V.; Vyhovska, I.O.; Honchar, L.O.; Skoromna, O.I.; Tkachenko, T.Y.; Zelinska, I.P. Experimental substantiation of new criteria for silage quality evaluation. Feed. Feed. Prod. 2019, 88, 99–106. [Google Scholar] [CrossRef]
- Zhang, X.; Ke, W.; Ding, Z.; Xu, D.; Wang, M.; Chen, M.; Guo, X. Microbial mechanisms of using feruloyl esterase-producing Lactobacillus plantarum A1 and grape pomace to improve fermentation quality and mitigate ruminal methane emission of ensiled alfalfa for cleaner animal production. J. Environ. Manag. 2022, 308, 114637. [Google Scholar] [CrossRef]
- Monllor, P.; Romero, G.G.; Muelas, R.; Sandoval-Castro, C.A.; Díaz, J.R. Ensiling Process in Commercial Bales of Horticultural By-Products from Artichoke and Broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef]
- Ramzan, H.N.; Tanveer, A.; Maqbool, R.; Akram, H.M.; Mirza, M.A. Use of sugarcane molasses as an additive can improve the silage quality of sorghum-sudangrass hybrid. Pak. J. Agric. Sci. 2022, 59, 75–81. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Q.; Wang, Y.; Dou, Z.; Yu, X.; Feng, H.; Yin, J. Using fresh vegetable waste from Chinese traditional wet markets as animal feed: Material feasibility and utilization potential. Sci. Total Environ. 2023, 902, 166105. [Google Scholar] [CrossRef]
- Kearney, P.C.; Kennedy, W.K. Relationship between losses of fermentable sugars and changes in organic acids of silage. Agron. J. 1962, 54, 114–115. [Google Scholar] [CrossRef]
- Opsahl, S.; Benner, R. Characterization of carbohydrates during early diagenesis of five vascular plant tissues. Org. Geochem. 1999, 30, 83–94. [Google Scholar] [CrossRef]
- Filannino, P.; Azzi, L.; Cavoski, I.; Vincentini, O.; Rizzello, C.G.; Gobbetti, M.; Di Cagno, R. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int. J. Food Microbiol. 2013, 163, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Gawlik-Dziki, U.; Kowalczyk, D.; Złotek, U. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. J. Funct. Foods 2020, 64, 103651. [Google Scholar] [CrossRef]
- Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Ma, M.; Li, C.; Luo, L. Stability of tea polyphenols solution with different pH at different temperatures. Int. J. Food Prop. 2016, 20, 1–18. [Google Scholar] [CrossRef]
- Nudda, A.; Correddu, F.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes. J. Dairy Sci. 2015, 98, 1157–1166. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, H.; He, X.; Zhu, F.; Zhang, F.; Liu, B.; Liu, Q. Effects of fermented feed of Pennisetum giganteum on growth performance, oxidative stress, immunity and gastrointestinal microflora of Boer goats under thermal stress. Front. Microbiol. 2023, 13. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Toşa, M.I.; Dulf, E. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chem. 2020, 310, 125927. [Google Scholar] [CrossRef]
- Carmona-Jiménez, Y.; Igartuburu, J.M.; Guillén-Sánchez, D.A.; García-Moreno, M.V. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules 2022, 27, 6980. [Google Scholar] [CrossRef]
- Rodríguez, M.; García-García, R.M.; Arias-Álvarez, M.; Millán, P.; Febrel, N.; Formoso-Rafferty, N.; López-Tello, J.; Lorenzo, P.L.; Rebollar, P.G. Improvements in the conception rate, milk composition, and embryo quality of rabbit does after dietary enrichment with n-3 polyunsaturated fatty acids. Animal 2018, 12, 2080–2088. [Google Scholar] [CrossRef]
- Akter, A.; Li, X.; Grey, E.; Wang, S.C.; Kebreab, E. Grape pomace supplementation reduced methane emissions and improved milk quality in lactating dairy cows. J. Dairy Sci. 2025, 108, 2468–2480. [Google Scholar] [CrossRef]
- Sealls, W.; Gonzalez, M.; Brosnan, M.J.; Black, P.N.; DiRusso, C.C. Dietary polyunsaturated fatty acids (C18:2 ω6 and C18:3 ω3) do not suppress hepatic lipogenesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2008, 1781, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, Z.G.; Ashbell, G. Engineering aspects of ensiling. Biochem. Eng. J. 2003, 13, 181–188. [Google Scholar] [CrossRef]
- Rahmani-Manglano, N.E.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Pérez-Gálvez, A.R.; Guadix-Escobar, E.M. The role of antioxidants and encapsulation processes in omega-3 stabilization. In Encapsulation of Emulsion-Based Antioxidants; Aboudzadeh, M.A., Ed.; Food Bioactive Ingredients; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Hung, W.; Sun Hwang, L.; Shahidi, F.; Pan, M.; Wang, Y.; Ho, C. Endogenous formation of trans fatty acids: Health implications and potential dietary intervention. J. Funct. Foods 2016, 25, 14–24. [Google Scholar] [CrossRef]
Microbial Group (log10 cfu/g) | Treatment | Days of Conservation | SE | Effect of Model 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 35 | 60 | 180 | Treatment | Day | Treat × Day | |||
Aerobes | Bucket | 7.12 | 7.12 | 8.63 | 9.71 | 9.47 | 9.22 | 0.18 | *** | *** | *** |
Silo | 6.39 | 5.52 | 6.49 | 6.42 | 5.91 | 6.66 | |||||
Lactic | Bucket | 6.06 | 7.24 | 7.76 | 8.04 | 7.93 | 8.13 | 0.22 | 0.8897 | *** | * |
Silo | 5.84 | 8.45 | 7.57 | 8.35 | 7.24 | 7.81 | |||||
Enterobacteria | Bucket | 4.11 | 5.10 | 7.25 | 8.08 | 7.92 | 6.50 | 0.56 | *** | *** | *** |
Silo | 3.45 | 3.43 | 5.13 | 4.28 | 0.00 | 1.27 | |||||
Molds | Bucket | 6.00 | 5.34 | 6.86 | 8.22 | 8.14 | 7.40 | 1.03 | *** | * | 0.097 |
Silo | 5.19 | 4.54 | 2.18 | 4.67 | 1.74 | 4.09 | |||||
Yeasts | Bucket | 7.67 | 6.28 | 7.48 | 7.71 | 8.54 | 5.90 | 0.60 | *** | 0.146 | * |
Silo | 5.75 | 4.30 | 3.03 | 5.14 | 3.05 | 5.08 | |||||
Clostridia 2 | Bucket | 3.31 | 1.95 | 2.79 | 2.56 | 2.71 | 2.87 | 0.24 | *** | 0.227 | 0.223 |
Silo | 3.26 | 3.26 | 3.33 | 3.33 | 3.33 | 3.27 |
g/kg DM | Treat | Days of Conservation | Effect of Model 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 35 | 60 | 180 | SE | Treat | Day | Treat × Day | ||
Glucose | Bucket | 19.53 | 16.30 | 18.29 | 5.48 | 3.08 | 0.27 | 0.60 | * | *** | 0.07 |
Silo | 20.02 | 16.23 | 14.99 | 3.84 | 1.94 | 0.28 | |||||
Fructose | Bucket | 6.73 | 4.71 | 3.76 | 1.44 | 0.91 | 0.48 | 0.42 | ** | *** | ** |
Silo | 7.84 | 1.55 | 1.54 | 1.15 | 0.65 | 0.51 | |||||
Sucrose | Bucket | 0.47 | 0.50 | 0.39 | 0.40 | 0.29 | 0.07 | 0.05 | ** | *** | 0.0731 |
Silo | 0.34 | 0.25 | 0.20 | 0.28 | 0.23 | 0.13 | |||||
Lactic acid | Bucket | 2.05 | 2.05 | 1.48 | 0.32 | 0.18 | 0.09 | 0.78 | *** | *** | *** |
Silo | 2.10 | 10.65 | 13.66 | 11.96 | 13.58 | 6.33 | |||||
Acetic acid | Bucket | 4.72 | 24.61 | 25.56 | 0.83 | 0.48 | 0.15 | 2.95 | 0.05 | ** | ** |
Silo | 4.56 | 4.53 | 4.81 | 8.62 | 4.65 | 7.20 | |||||
Ethanol | Bucket | 34.91 | 0.40 | 0.29 | 0.07 | 0.07 | 0.06 | 1.65 | *** | *** | *** |
Silo | 35.96 | 24.80 | 27.59 | 23.73 | 27.57 | 16.14 | |||||
Tartaric acid | Bucket | 17.70 | 15.96 | 15.61 | 5.39 | 6.25 | 0.63 | 0.57 | *** | *** | *** |
Silo | 16.31 | 14.96 | 13.71 | 10.16 | 11.49 | 12.03 | |||||
Butyric acid | Bucket | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.07 | 0.55 | 0.45 | 0.46 |
Silo | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 | |||||
Propionic acid | Bucket | 0.38 | 0.18 | 0.19 | 0.00 | 0.00 | 0.74 | 0.08 | 0.11 | *** | *** |
Silo | 0.66 | 0.14 | 0.00 | 0.10 | 0.00 | 0.10 |
Item 1 | Treat | Days of Conservation | Effect of Model 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 35 | 60 | 180 | SE | Treat | Day | Treat × Day | ||
DM, % | Bucket | 55.16 | 59.67 | 56.51 | 66.85 | 64.66 | 54.47 | 3.45 | 0.1602 | 0.3056 | 0.362 |
Silo | 55.82 | 58.98 | 58.68 | 55.68 | 56.48 | 53.78 | |||||
pH | Bucket | 4.03 | 3.80 | 3.97 | 7.57 | 7.90 | 7.62 | 0.16 | *** | *** | *** |
Silo | 3.89 | 3.91 | 3.91 | 3.74 | 4.10 | 4.22 | |||||
Flieg Score | Bucket | 154.3 | 179.5 | 159.4 | 35.8 | 18.4 | 9.03 | 7.63 | *** | *** | *** |
Silo | 160.9 | 166.7 | 166.1 | 166.9 | 154.1 | 143.8 | |||||
Starch | Bucket | 3.35 | 2.75 | 2.45 | 2.95 | 2.70 | 1.30 | 0.40 | 0.055 | 0.319 | 0.146 |
Silo | 2.95 | 3.05 | 2.95 | 3.40 | 2.80 | 3.30 | |||||
Sugars | Bucket | 0.50 | 0.40 | 0.50 | 0.30 | 0.30 | 0.30 | 0.12 | 0.194 | ** | * |
Silo | 1.20 | 0.40 | 0.30 | 0.50 | 0.30 | 0.20 | |||||
EE | Bucket | 9.40 | 10.85 | 10.10 | 9.45 | 9.35 | 9.60 | 0.60 | ** | 0.161 | 0.348 |
Silo | 7.45 | 9.00 | 9.05 | 8.50 | 9.90 | 7.70 | |||||
CP | Bucket | 11.15 | 11.05 | 11.45 | 12.85 | 12.20 | 14.25 | 0.77 | ** | 0.066 | 0.484 |
Silo | 9.75 | 10.00 | 10.20 | 11.00 | 12.05 | 10.90 | |||||
NPN | Bucket | 0.65 | 0.85 | 1.45 | 0.50 | 1.35 | 0.80 | 0.23 | 0.091 | 0.197 | 0.153 |
Silo | 1.30 | 1.25 | 1.20 | 1.40 | 1.25 | 0.70 | |||||
CF | Bucket | 34.65 | 36.80 | 38.95 | 39.45 | 40.10 | 36.45 | 2.41 | ** | 0.271 | 0.639 |
Silo | 31.30 | 33.70 | 32.10 | 29.90 | 38.15 | 32.30 | |||||
NDF | Bucket | 46.70 | 48.80 | 51.05 | 62.15 | 55.75 | 70.15 | 4.19 | 0.115 | * | 0.110 |
Silo | 48.95 | 48.60 | 48.60 | 55.40 | 59.15 | 49.20 | |||||
ADF | Bucket | 40.10 | 42.45 | 44.05 | 55.40 | 46.65 | 62.85 | 4.07 | 0.293 | 0.243 | * |
Silo | 46.85 | 45.50 | 45.45 | 46.25 | 52.35 | 39.60 | |||||
ADL | Bucket | 27.77 | 30.89 | 32.60 | 40.05 | 32.33 | 51.29 | 4.35 | * | 0.363 | * |
Silo | 29.21 | 29.66 | 30.74 | 31.31 | 37.66 | 22.87 | |||||
Ash | Bucket | 6.10 | 4.85 | 4.95 | 6.55 | 6.15 | 6.75 | 0.47 | 0.722 | 0.137 | 0.365 |
Silo | 6.10 | 5.50 | 5.70 | 5.40 | 5.95 | 6.10 |
Item (mg/100 g DM) | Treatment | Days of Conservation | Effect of Model (p < 0.05) 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 35 | 60 | 180 | SE | Treatment | Day | Treat × Day | ||
Polymeric proanthocyanidins | Bucket | 3170 | 2358 | 3412 | 1138 | 942 | 172 | 256 | 0.05 | * | 0.05 |
Silo | 2264 | 2395 | 2894 | 3115 | 2718 | 1435 | |||||
Total anthocyanins | Bucket | 0.73 | 0.88 | 0.46 | 0.00 | 0.00 | 0.00 | 0.16 | 0.56 | ** | 0.28 |
Silo | 0.34 | 0.50 | 0.65 | 0.19 | 0.06 | 0.00 | |||||
Total flavan-3-ols | Bucket | 20.66 | 30.65 | 24.81 | 11.16 | 3.35 | 2.86 | 7.52 | 0.14 | 0.24 | 0.50 |
Silo | 7.49 | 8.96 | 13.97 | 7.27 | 6.70 | 7.35 | |||||
Total flavonols | Bucket | 0.83 | 2.77 | 1.73 | 0.97 | 0.26 | 0.11 | 0.65 | 0.09 | 0.13 | 0.20 |
Silo | 2.15 | 1.03 | 3.26 | 1.71 | 1.42 | 1.28 | |||||
Total phenolic acids | Bucket | 0.32 | 0.32 | 0.16 | 0.00 | 0.00 | 0.00 | 0.12 | * | 0.38 | ** |
Silo | 1.14 | 0.63 | 0.94 | 0.61 | 0.60 | 0.66 | |||||
Total polyphenols | Bucket | 3192 | 2392 | 3439 | 1150 | 945 | 1742 | 257 | ** | ** | 17.36 |
Silo | 2275 | 2406 | 2912 | 3124 | 2726 | 1444 |
mg eq Trolox/ 100 g DM | Treatment | Day of Conservation | Effect of Model 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 35 | 60 | 180 | SE | Treatment | Day | Treat × Day | ||
DPPH | Bucket | 471.9 | 429.5 | 418.4 | 208.9 | 173.1 | 103.7 | 34.37 | *** | *** | *** |
Silo | 335.8 | 588.7 | 714.6 | 432.0 | 541.4 | 325.5 | |||||
ABTS | Bucket | 751.0 | 837.2 | 792.6 | 332.6 | 350.7 | 109.3 | 82.77 | *** | *** | * |
Silo | 646.0 | 1290.3 | 1164.9 | 806.7 | 993.0 | 607.1 |
Item 1 | Treatment | Day of Conservation | Effect of Model 2 | ||||
---|---|---|---|---|---|---|---|
0 | 180 | SE | Treatment | Day | Treat × Day | ||
SFA | Bucket | 16.77 | 14.80 | 0.6054 | *** | 0.6172 | * |
Silo | 17.72 | 19.07 | |||||
MUFA | Bucket | 17.23 | 16.34 | 0.1989 | *** | * | 0.1732 |
Silo | 18.35 | 18.04 | |||||
PUFA | Bucket | 66.01 | 68.85 | 0.6176 | *** | 0.1698 | ** |
Silo | 63.93 | 62.89 | |||||
UFA | Bucket | 83.23 | 85.19 | 0.6055 | *** | 0.6209 | * |
Silo | 82.28 | 80.93 | |||||
SCFA | Bucket | 0.45 | 0.09 | 0.1367 | 0.1496 | 0.9926 | * |
Silo | 0.30 | 0.66 | |||||
MCFA | Bucket | 1.26 | 8.69 | 0.4871 | *** | 0.1492 | ** |
Silo | 11.87 | 12.94 | |||||
LCFA | Bucket | 88.30 | 91.21 | 0.5862 | *** | 0.2271 | ** |
Silo | 87.83 | 86.41 | |||||
n3 | Bucket | 1.30 | 0.30 | 0.1651 | *** | 0.173 | *** |
Silo | 1.30 | 1.82 | |||||
n6 | Bucket | 64.57 | 68.40 | 0.7675 | *** | 0.1849 | ** |
Silo | 62.41 | 60.73 | |||||
n6/n3 | Bucket | 62.41 | 229.03 | 7.0833 | *** | *** | *** |
Silo | 49.91 | 35.13 | |||||
IA | Bucket | 0.14 | 0.10 | 0.0075 | *** | 0.1944 | ** |
Silo | 0.15 | 0.16 | |||||
TI | Bucket | 0.34 | 0.32 | 0.3383 | *** | 0.799 | 0.0945 |
Silo | 0.36 | 0.38 | |||||
HH | Bucket | 7.81 | 10.22 | 0.3241 | *** | * | *** |
Silo | 7.33 | 6.64 | |||||
HPI | Bucket | 5.70 | 5.43 | 0.1838 | *** | * | *** |
Silo | 6.92 | 5.03 | |||||
LA/ALA | Bucket | 55.72 | 265.39 | 6.4981 | *** | *** | *** |
Silo | 51.28 | 37.80 | |||||
TFA | Bucket | 0.01 | 0.52 | 0.0900 | * | * | * |
Silo | 0.05 | 0.01 | |||||
OBCFA | Bucket | 0.28 | 0.29 | 0.0388 | * | 0.7489 | 0.9785 |
Silo | 0.37 | 0.38 | |||||
OLESTE | Bucket | 3.38 | 2.65 | 0.0421 | *** | *** | *** |
Silo | 3.39 | 3.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, G.; Nieddu, L.; Mouhssine, A.; Nowicka, P.; Bueso-Ródenas, J.; Fernández, N.; Díaz, J.R. Bale Ensiling Preserves Nutritional Composition and Phenolic Compounds of Red Grape Pomace. AgriEngineering 2025, 7, 172. https://doi.org/10.3390/agriengineering7060172
Romero G, Nieddu L, Mouhssine A, Nowicka P, Bueso-Ródenas J, Fernández N, Díaz JR. Bale Ensiling Preserves Nutritional Composition and Phenolic Compounds of Red Grape Pomace. AgriEngineering. 2025; 7(6):172. https://doi.org/10.3390/agriengineering7060172
Chicago/Turabian StyleRomero, Gema, Lidia Nieddu, Aymane Mouhssine, Paulina Nowicka, Joel Bueso-Ródenas, Nemesio Fernández, and José Ramón Díaz. 2025. "Bale Ensiling Preserves Nutritional Composition and Phenolic Compounds of Red Grape Pomace" AgriEngineering 7, no. 6: 172. https://doi.org/10.3390/agriengineering7060172
APA StyleRomero, G., Nieddu, L., Mouhssine, A., Nowicka, P., Bueso-Ródenas, J., Fernández, N., & Díaz, J. R. (2025). Bale Ensiling Preserves Nutritional Composition and Phenolic Compounds of Red Grape Pomace. AgriEngineering, 7(6), 172. https://doi.org/10.3390/agriengineering7060172