Application of High-Resolution Regional Climate Model Simulations for Crop Yield Estimation in Southern Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. The CORDEX FPS-Southeastern South America (SESA) CPRCM Simulations
2.2. Crop Model
2.2.1. AgS
2.2.2. Soybean and Maize Parametrizations
2.3. AgS Simulation Settings and Data
2.4. Crop Yield Simulation Evaluations
2.5. Effect of the Number of Grid Points
3. Results
3.1. Impacts of Regional Climate Data on Crop Yield Simulations
3.2. Effect of the Number of Grid Points on the Average of Crop Yield at County Level
4. Discussion
4.1. Impacts of Climate Input on Crop Models
4.2. Impacts of Subsampling Grid Points
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Calibration and Evaluation Results for the AgS Crop Growth Model
Appendix A.2. Methodological Flowchart
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 28 October 2024).
- IBGE. Instituto Brasileiro de Geografia e Estatística. Sistema de Recuperação Automática (SIDRA). 2024. Available online: https://sidra.ibge.gov.br (accessed on 28 October 2024).
- MAPA. Ministério da Agricultura Pecuária e Abastecimento—Programa de Subvenção ao Prêmio do Seguro Rural. Relatório 2023. 2024. Available online: https://www.gov.br/agricultura/pt-br/assuntos/riscos-seguro/seguro-rural/dados/relatorios/RelatorioGeralPSR2023.pdf (accessed on 28 October 2024).
- Kim, K.S.; Yoo, B. Comparison of Regional Climate Scenario Data by a Spatial Resolution for the Impact Assessment of the Uncertainty Associated with Meteorological Inputs Data on Crop Yield Simulations in Korea. J. Crop Sci. Biotechnol. 2015, 18, 249–255. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate Change Impacts on Crop Yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- da Rocha, R.P.; Llopart, M.; Reboita, M.S.; Bettolli, M.L.; Solman, S.; Fernández, J.; Milovac, J.; Feijoó, M.; Coppola, E. Precipitation Diurnal Cycle Assessment in Convection-Permitting Simulations in Southeastern South America. Earth Syst. Environ. 2024, 8, 1–19. [Google Scholar] [CrossRef]
- Chapagain, R.; Remenyi, T.A.; Harris, R.M.B.; Mohammed, C.L.; Huth, N.; Wallach, D.; Rezaei, E.E.; Ojeda, J.J. Decomposing Crop Model Uncertainty: A Systematic Review. Field Crops Res. 2022, 279, 108448. [Google Scholar] [CrossRef]
- Pan, H.; Chen, Z. Crop Growth Modeling and Yield Forecasting BT-Agro-Geoinformatics: Theory and Practice; Di, L., Üstündağ, B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 205–220. [Google Scholar] [CrossRef]
- Ramarohetra, J.; Pohl, B.; Sultan, B. Errors and Uncertainties Introduced by a Regional Climate Model in Climate Impact Assessments: Example of Crop Yield Simulations in West Africa. Environ. Res. Lett. 2015, 10, 124014. [Google Scholar] [CrossRef]
- Vesely, F.M.; Paleari, L.; Movedi, E.; Bellocchi, G.; Confalonieri, R. Quantifying Uncertainty Due to Stochastic Weather Generators in Climate Change Impact Studies. Sci. Rep. 2019, 9, 9258. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Wakatsuki, H.; Ju, H.; Vyas, S.; Nelson, G.C.; Farrell, A.; Deryng, D.; Meza, F.; Makowski, D. A Global Dataset for the Projected Impacts of Climate Change on Four Major Crops. Sci. Data 2022, 9, 58. [Google Scholar] [CrossRef]
- Lafferty, D.C.; Sriver, R.L. Downscaling and Bias-Correction Contribute Considerable Uncertainty to Local Climate Projections in CMIP6. npj Clim. Atmos. Sci. 2023, 6, 158. [Google Scholar] [CrossRef]
- Falco, M.; Carril, A.F.; Menéndez, C.G.; Zaninelli, P.G.; Li, L.Z.X. Assessment of CORDEX Simulations over South America: Added Value on Seasonal Climatology and Resolution Considerations. Clim. Dyn. 2019, 52, 4771–4786. [Google Scholar] [CrossRef]
- Reboita, M.S.; Dutra, L.M.M.; Dias, C.G. Diurnal Cycle of Precipitation Simulated by RegCM4 over South America: Present and Future Scenarios. Clim. Res. 2016, 70, 39–55. [Google Scholar] [CrossRef]
- Coppola, E.; Sobolowski, S.; Pichelli, E.; Raffaele, F.; Ahrens, B.; Anders, I.; Ban, N.; Bastin, S.; Belda, M.; Belusic, D.; et al. A First-of-Its-Kind Multi-Model Convection Permitting Ensemble for Investigating Convective Phenomena over Europe and the Mediterranean. Clim. Dyn. 2020, 55, 3–34. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A Review on Regional Convection-Permitting Climate Modeling: Demonstrations, Prospects, and Challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed]
- Scaff, L.; Prein, A.F.; Li, Y.; Liu, C.; Rasmussen, R.; Ikeda, K. Simulating the Convective Precipitation Diurnal Cycle in North America’s Current and Future Climate. Clim. Dyn. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.; Wilkinson, J.M. Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change? Bull. Am. Meteorol. Soc. 2017, 98, 79–93. [Google Scholar] [CrossRef]
- Bettolli, M.L.; Solman, S.A.; da Rocha, R.P.; Llopart, M.; Gutierrez, J.M.; Fernández, J.; Olmo, M.E.; Lavin-Gullon, A.; Chou, S.C.; Carneiro Rodrigues, D.; et al. The CORDEX Flagship Pilot Study in Southeastern South America: A Comparative Study of Statistical and Dynamical Downscaling Models in Simulating Daily Extreme Precipitation Events. Clim. Dyn. 2021, 56, 1589–1608. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model Description and Preliminary Tests over Multiple CORDEX Domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Giuliani, G.; Ciarlo, J.M.; Pichelli, E.; Nogherotto, R.; Raffaele, F.; Malguzzi, P.; Davolio, S.; Stocchi, P.; et al. The Fifth Generation Regional Climate Modeling System, RegCM5: Description and Illustrative Examples at Parameterized Convection and Convection-Permitting Resolutions. J. Geophys. Res. Atmos. 2023, 128, e2022JD038199. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.B.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Model Version 4.3; (No. NCAR/TN556+STR); NSF: Alexandria, VA, USA, 2021. [CrossRef]
- Tomasella, J.; Hodnett, M.G.; Rossato, L. Pedotransfer Functions for the Estimation of Soil Water Retention in Brazilian Soils. Soil Sci. Soc. Am. J. 2000, 64, 327–338. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G. Estimating Unsaturated Hydraulic Conductivity of Brazilian Soils Using Soil-Water Retention Data. Soil Sci. 1997, 162, 703–712. [Google Scholar] [CrossRef]
- Carrara, E.R.; Lopes, P.S.; Reis, A.C.Z.; Silva, J.X.; Dias, L.C.d.C.M.; Schultz, É.B.; Marques, D.B.D.; da Silva, D.A.; Veroneze, R.; Andrade, R.G.; et al. NASA POWER Satellite Meteorological System Is a Good Tool for Obtaining Estimates of the Temperature-Humidity Index under Brazilian Conditions Compared to INMET Weather Stations Data. Int. J. Biometeorol. 2023, 67, 1273–1277. [Google Scholar] [CrossRef]
- Rozante, J.R.; Vila, D.A.; Barboza Chiquetto, J.; Fernandes, A.D.A.; Souza Alvim, D. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef]
- Duarte, Y.C.N.; Sentelhas, P.C. NASA/POWER and DailyGridded Weather Datasets—How Good They Are for Estimating Maize Yields in Brazil? Int. J. Biometeorol. 2020, 64, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Sakurai, G.; Iizumi, T. Seasonal Predictability of Four Major Crop Yields Worldwide by a Hybrid System of Dynamical Climate Prediction and Eco-Physiological Crop-Growth Simulation. Front. Sustain. Food Syst. 2020, 4, 84. [Google Scholar] [CrossRef]
- Watson, J.; Challinor, A. The Relative Importance of Rainfall, Temperature and Yield Data for a Regional-Scale Crop Model. Agric. For. Meteorol. 2013, 170, 47–57. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation Strategies for Maize Production under Climate Change for Semi-Arid Environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, J.P.; Sharma, A. Multivariate Bias Correction of Regional Climate Model Boundary Conditions. Clim. Dyn. 2023, 61, 3253–3269. [Google Scholar] [CrossRef]
- Battisti, R.; Sentelhas, P.C.; Pascoalino, J.A.L.; Sako, H.; de Sá Dantas, J.P.; Moraes, M.F. Soybean Yield Gap in the Areas of Yield Contest in Brazil. Int. J. Plant Prod. 2018, 12, 159–168. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Sugarcane Yield Gap Analysis in Brazil—A Multi-Model Approach for Determining Magnitudes and Causes. Sci. Total Environ. 2018, 637–638, 1127–1136. [Google Scholar] [CrossRef]
- Van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of Agro-Climatic Zones to Upscale Simulated Crop Yield Potential. Field Crops Res. 2013, 143, 44–55. [Google Scholar] [CrossRef]
- Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; et al. Evaluating the Precision of Eight Spatial Sampling Schemes in Estimating Regional Means of Simulated Yield for Two Crops. Environ. Model. Softw. 2016, 80, 100–112. [Google Scholar] [CrossRef]
- Van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; et al. Spatial Sampling of Weather Data for Regional Crop Yield Simulations. Agric. For. Meteorol. 2016, 220, 101–115. [Google Scholar] [CrossRef]
Climate Data/Model | Institution | Label | Reference |
---|---|---|---|
NASA POWER/GPM | NASA | BASE | https://power.larc.nasa.gov * https://gpm.nasa.gov/ * |
RegCM5 | ICTP (Italy) | RegCM5-ICTP-pbl1 | Giorgi et al. [21] |
RegCM5 | ICTP (Italy) | RegCM5-ICTP-pbl2 | Giorgi et al. [21] |
RegCM4 | USP (Brazil) | RegCM4-USP | Giorgi et al. [21] |
WRF433 | UCAN (Spain) | WRF-UCAN | Skamarock et al. [22] |
WRF415 | NCAR (USA) | WRF-NCAR | Skamarock et al. [22] |
Metric | Experiment | RAIN (SB) | TEMP (SB) | SRAD (SB) | YIELD (SB) | RAIN (MZ) | TEMP(MZ) | SRAD (MZ) | YIELD (MZ) |
---|---|---|---|---|---|---|---|---|---|
M | BASE | 609 | 24.52 | 21.85 | 2734 | 423 | 21.83 | 16.99 | 2411 |
M | WRF-NCAR | 650 | 24.47 | 24.66 | 2868 | 379 | 21.51 | 18.76 | 1992 |
M | WRF-UCAN | 846 | 25.37 | 23.00 | 2970 | 536 | 21.52 | 17.16 | 2695 |
M | RegCM5-ICTP-pbl1 | 602 | 25.21 | 22.27 | 2627 | 395 | 22.43 | 17.63 | 2532 |
M | RegCM5-ICTP-pbl2 | 451 | 25.10 | 24.45 | 2187 | 292 | 21.97 | 18.82 | 1663 |
M | RegCM4-USP | 642 | 25.50 | 23.21 | 2751 | 406 | 22.94 | 17.87 | 2609 |
MB | NCAR_WRF | 41 | −0.05 | 2.81 | 134 | −45 | −0.32 | 1.77 | −419 |
MB | UCAN_WRF | 236 | 0.85 | 1.15 | 236 | 112 | −0.31 | 0.17 | 284 |
MB | ICTP_RegCM5_pbl1 | −8 | 0.69 | 0.42 | −107 | −28 | 0.60 | 0.64 | 120 |
MB | ICTP_RegCM5_pbl2 | −158 | 0.58 | 2.59 | −547 | −131 | 0.14 | 1.83 | −748 |
MB | USP_RegCM4 | 33 | 0.98 | 1.35 | 17 | −18 | 1.11 | 0.89 | 198 |
RMSE | NCAR_WRF | 176 | 0.77 | 2.93 | 374 | 115 | 0.80 | 1.82 | 622 |
RMSE | UCAN_WRF | 284 | 1.17 | 1.32 | 408 | 145 | 0.75 | 0.43 | 476 |
RMSE | ICTP_RegCM5_pbl1 | 193 | 1.00 | 0.85 | 431 | 149 | 0.93 | 0.83 | 642 |
RMSE | ICTP_RegCM5_pbl2 | 202 | 0.98 | 2.67 | 679 | 163 | 0.82 | 1.87 | 945 |
RMSE | USP_RegCM4 | 200 | 1.22 | 1.61 | 380 | 142 | 1.33 | 1.02 | 794 |
ACCs | NCAR_WRF | 0.26 | 0.95 | 0.80 | 0.82 | 0.40 | 0.97 | 0.98 | 0.66 |
ACCs | UCAN_WRF | 0.31 | 0.94 | 0.87 | 0.58 | 0.61 | 0.96 | 0.96 | 0.67 |
ACCs | ICTP_RegCM5_pbl1 | 0.07 | 0.94 | 0.84 | 0.41 | 0.35 | 0.96 | 0.94 | 0.30 |
ACCs | ICTP_RegCM5_pbl2 | 0.19 | 0.95 | 0.81 | 0.43 | 0.51 | 0.96 | 0.97 | 0.40 |
ACCs | USP_RegCM4 | 0.18 | 0.94 | 0.81 | 0.56 | 0.41 | 0.96 | 0.94 | 0.11 |
ACCt | NCAR_WRF | 0.57 | 0.64 | 0.85 | 0.66 | 0.75 | 0.93 | 0.96 | 0.77 |
ACCt | UCAN_WRF | 0.61 | 0.50 | 0.73 | 0.46 | 0.74 | 0.75 | 0.85 | 0.71 |
ACCt | ICTP_RegCM5_pbl1 | 0.46 | 0.60 | 0.69 | 0.37 | 0.74 | 0.93 | 0.98 | 0.76 |
ACCt | ICTP_RegCM5_pbl2 | 0.61 | 0.53 | 0.77 | 0.47 | 0.82 | 0.93 | 0.98 | 0.77 |
ACCt | USP_RegCM4 | 0.50 | 0.58 | 0.44 | 0.46 | 0.77 | 0.92 | 0.98 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuadra, S.V.; de Oliveira, M.P.G.; Victoria, D.d.C.; Bender, F.D.; Bettolli, M.L.; Solman, S.; da Rocha, R.P.; Fernández, J.; Milovac, J.; Coppola, E.; et al. Application of High-Resolution Regional Climate Model Simulations for Crop Yield Estimation in Southern Brazil. AgriEngineering 2025, 7, 108. https://doi.org/10.3390/agriengineering7040108
Cuadra SV, de Oliveira MPG, Victoria DdC, Bender FD, Bettolli ML, Solman S, da Rocha RP, Fernández J, Milovac J, Coppola E, et al. Application of High-Resolution Regional Climate Model Simulations for Crop Yield Estimation in Southern Brazil. AgriEngineering. 2025; 7(4):108. https://doi.org/10.3390/agriengineering7040108
Chicago/Turabian StyleCuadra, Santiago Vianna, Monique Pires Gravina de Oliveira, Daniel de Castro Victoria, Fabiani Denise Bender, Maria L. Bettolli, Silvina Solman, Rosmeri Porfírio da Rocha, Jesús Fernández, Josipa Milovac, Erika Coppola, and et al. 2025. "Application of High-Resolution Regional Climate Model Simulations for Crop Yield Estimation in Southern Brazil" AgriEngineering 7, no. 4: 108. https://doi.org/10.3390/agriengineering7040108
APA StyleCuadra, S. V., de Oliveira, M. P. G., Victoria, D. d. C., Bender, F. D., Bettolli, M. L., Solman, S., da Rocha, R. P., Fernández, J., Milovac, J., Coppola, E., & Doyle, M. (2025). Application of High-Resolution Regional Climate Model Simulations for Crop Yield Estimation in Southern Brazil. AgriEngineering, 7(4), 108. https://doi.org/10.3390/agriengineering7040108