Random Reflectance: A New Hyperspectral Data Preprocessing Method for Improving the Accuracy of Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object of Study
2.2. Hyperspectral Imaging
2.3. Hyperspectral Data Preprocessing
2.4. Analysing Preprocessed Hyperspectral Data
3. Results
3.1. Exploration Analysis of Synthetic Spectral Profiles
3.2. Results of Maple Classification Using Machine Learning Algorithms Based on Original and Synthetic Spectral Profiles
4. Discussion
- To balance classes and expand the size of training samples, which is relevant in cases when the initial data are few or difficult to collect. This is justified by the fact that the method synthesises any number of SPs while preserving the statistical characteristics of the distribution of reflectivity values of their SBs. In such cases, it is crucial that the sample of the initial SP is representative of the object.
- To improve the classification accuracy of ML algorithms, which is justified by the significant improvement in prediction accuracy of maple species observed with both the RF and GB algorithms.
- To ‘combat’ the phenomenon of collinearity of neighbouring spectral channels in the hyperspectral cube; the application of the RR method allows us to reduce the R2 value between spectral channels to 0.1.
5. Limitations
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Vera, Y.E.; Polochè-Arango, A.; Mendivelso-Fajardo, C.A.; Gutiérrez-Bernal, F.J. Hyperspectral Image Analysis and Machine Learning Techniques for Crop Disease Detection and Identification: A Review. Sustainability 2024, 16, 6064. [Google Scholar] [CrossRef]
- Ram, B.G.; Oduor, P.; Igathinathane, C.; Howatt, K.; Sun, X. A systematic review of hyperspectral imaging in precision agriculture: Analysis of its current state and future prospects. Comput. Electron. Agric. 2024, 222, 109037. [Google Scholar] [CrossRef]
- Yel, S.G.; Gormus, E.T. Exploiting hyperspectral and multispectral images in the detection of tree species: A review. Front. Remote Sens. 2023, 4, 1136289. [Google Scholar] [CrossRef]
- Jian, L.; Asaari, M.S.M.; Haidi, I.; Khairi, M.I.; Abdul, D. A Review on Analysis Method of Proximal Hyperspectral Imaging for Studying Plant Traits. Pertanika J. Sci. Technol. T1 2023, 31, 2823–2850. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; Gilbert, M.E.; Pierce, M.A.; Parker, T.A.; Palkovic, A.; Gepts, P.; Magney, T.S.; Buckley, T.N. Hyperspectral Remote Sensing for Phenotyping the Physiological Drought Response of Common and Tepary Bean. Plant Phenomics 2023, 5, 0021. [Google Scholar] [CrossRef]
- Mishra, P.; Lohumi, S.; Khan, H.A.; Nordon, A. Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Comput. Electron. Agric. 2020, 178, 105780. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, Z.; Li, D.; Liu, X. Phenotypic techniques and applications in fruit trees: A review. Plant Methods 2020, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, P.A.; Kozlovsky, B.L.; Dmitrieva, A.A.; Varduni, T.V. Maple species identification based on leaf hyperspectral imaging data. Remote Sens. Appl. Soc. Environ. 2023, 30, 100964. [Google Scholar] [CrossRef]
- Hycza, T.; Stereńczak, K.; Bałazy, R. Potential use of hyperspectral data to classify forest tree species. N. Z. J. For. Sci. 2018, 48, 18. [Google Scholar] [CrossRef]
- Mazdeyasna, S.; Arefin, M.S.; Fales, A.; Leavesley, S.J.; Pfefer, T.J.; Wang, Q. Evaluating Normalization Methods for Robust Spectral Performance Assessments of Hyperspectral Imaging Cameras. Biosensors 2025, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Witteveen, M.; Sterenborg, H.J.C.M.; van Leeuwen, T.G.; Aalders, M.C.G.; Ruers, T.J.M.; Post, A.L. Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging. J. Biomed Opt. 2022, 27, 106003. [Google Scholar] [CrossRef]
- Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Arun, S.; Lovish, S.; Viren, C.; Debrup, C.; Aneek, B.R. Impact of Noise in Dataset on Machine Learning Algorithms. Mach. Learn. Res. 2019, 1, 1–8. [Google Scholar] [CrossRef]
- Barra, I.; Briak, H.; Kebede, F. The application of statistical preprocessing on spectral data does not always guarantee the improvement of the predictive quality of multivariate models: Case of soil spectroscopy applied to Moroccan soils. Vib. Spectrosc. 2022, 121, 103409. [Google Scholar] [CrossRef]
- Hoosen, A.N.; Onisimo, M.; Kabir, P.; Riyad, I. The Impact of Simulated Spectral Noise on Random Forest and Oblique Random Forest Classification Performance. J. Spectrosc. 2018, 2018, 8316918. [Google Scholar] [CrossRef]
- Maharana, K.; Mondal, S.; Nemade, B. A review: Data pre-processing and data augmentation techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, F.; He, Y. Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis. Sci Rep. 2018, 8, 2166. [Google Scholar] [CrossRef]
- Clark, M.; Roberts, D.; Clark, D. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Sellars, P.; Aviles-Rivero, A.; Schonlieb, C.B. Superpixel Contracted Graph-Based Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4180–4193. [Google Scholar] [CrossRef]
- Xie, F.; Gao, Q.; Jin, C.; Zhao, F. Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning. Remote Sens. 2021, 13, 930. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Kong, F. Superpixel-feature-based multiple kernel sparse representation for hyperspectral image classification. Signal Process. 2020, 176, 107682. [Google Scholar] [CrossRef]
- Tu, B.; Ren, Q.; Li, Q.; He, W.; He, W. Hyperspectral Image Classification Using A Superpixel-Pixel-Subpixel Multilevel Network. IEEE Trans. Instrum. Meas. 2023, 72, 5013616. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, X.; Chen, Y.; Sun, C. Classification of hyperspectral image by preprocessing method based relation network. Int. J. Remote Sens. 2023, 44, 6929–6953. [Google Scholar] [CrossRef]
- Shenming, Q.; Xiang, L.; Zhihua, G. A new hyperspectral image classification method based on spatial-spectral features. Sci. Rep. 2022, 12, 1541. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Kang, X.; Li, S.; Ghamisi, P. Noise-Robust Hyperspectral Image Classification via Multi-Scale Total Variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1948–1962. [Google Scholar] [CrossRef]
- Prakash, I. Comprehensive Review of Maple Trees: Evolution, Biogeographical Distribution, Ecology, and Economic Significance with Emphasis on Canada. Indian J. Ecol. 2024, 15, 1418–1423. [Google Scholar] [CrossRef]
- Khapugin, A. A global systematic review of publications concerning the invasion biology of four tree species. Hacquetia 2019, 18, 233–270. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Kozlovsky, B.L.; Dmitrieva, A.A. Assessing the phenological state of evergreen conifers using hyperspectral imaging time series. Remote Sens. Appl. Soc. Environ. 2024, 36, 101342. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Zhou, C.; Tu, B.; Ren, Q.; Chen, S. Spatial peak-aware collaborative representation for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5506805. [Google Scholar] [CrossRef]
- Stasinski, L.; White, D.M.; Nelson, P.R.; Ree, R.H.; Meireles, J.E. Reading light: Leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs. New Phytol. 2021, 232, 2283–2294. [Google Scholar] [CrossRef]
- Peters, R.D.; Noble, S.D. Characterization of leaf surface phenotypes based on light interaction. Plant Methods 2023, 19, 26. [Google Scholar] [CrossRef]
- Patiluna, V.; Owen, J., Jr.; Maja, J.M.; Neupane, J.; Behmann, J.; Bohnenkamp, D.; Borra-Serrano, I.; Peña, J.M.; Robbins, J.; de Castro, A. Using Hyperspectral Imaging and Principal Component Analysis to Detect and Monitor Water Stress in Ornamental Plants. Remote Sens. 2025, 17, 285. [Google Scholar] [CrossRef]
- Chan, J.Y.-L.; Leow, S.M.H.; Bea, K.T.; Cheng, W.K.; Phoong, S.W.; Hong, Z.-W.; Chen, Y.-L. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022, 10, 1283. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, B.; Wang, B. A Preprocessing Method for Hyperspectral Target Detection Based on Tensor Principal Component Analysis. Remote Sens. 2018, 10, 1033. [Google Scholar] [CrossRef]
- Cozzolino, D.; Williams, P.J.; Hoffman, L.C. An overview of pre-processing methods available for hyperspectral imaging applications. Microchem. J. 2023, 193, 09129. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Xu, Z.; Yu, Y.; Zhang, S.; Dai, R. Exploring Appropriate Preprocessing Techniques for Hyperspectral Soil Organic Matter Content Estimation in Black Soil Area. Remote Sens. 2020, 12, 3765. [Google Scholar] [CrossRef]
- Vaiphasa, C. Consideration of smoothing techniques for hyperspectral remote sensing. ISPRS J. Photogramm. Remote Sens. 2006, 60, 91–99. [Google Scholar] [CrossRef]
- Ferreira, M.P.; de Almeida, D.R.A.; de Almeida Papa, D.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual tree detection and species classification of amazonian palms using uavimages and deep learning. For. Ecol. Manag. 2020, 475, 118397. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. Mapping Urban Tree Species by Integrating Multi-Seasonal High Resolution Pléiades Satellite Imagery with Airborne LiDAR Data. Urban For. Urban Green 2020, 53, 126675. [Google Scholar] [CrossRef]
- Grigorieva, O.; Brovkina, O.; Saidov, A. An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data. Silva Fenn. 2020, 54, 10143. [Google Scholar] [CrossRef]
- Fang, F.; McNeil, B.E.; Warner, T.A.; Maxwell, A.E.; Dahle, G.A.; Eutsler, E.; Li, J. Discriminating tree species at different taxonomic levels using multitemporal WorldView-3 imagery in Washington DC, USA. Remote Sens. Environ. 2020, 246, 111811. [Google Scholar] [CrossRef]
Spectral Profile (Sample Size) | Statistics | Band, nm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
454 | 510 | 562 | 614 | 670 | 722 | 770 | 822 | 870 | 930 | ||
Real (n = 172) | Min | 3.0 | 6.0 | 9.0 | 6.0 | 5.0 | 16.0 | 17.0 | 17.0 | 17.0 | 11.0 |
Max | 5.0 | 11.0 | 15.0 | 12.0 | 10.0 | 48.0 | 59.0 | 59.0 | 57.0 | 39.0 | |
Mean | 3.9 | 7.7 | 12.0 | 7.9 | 6.1 | 33.7 | 40.7 | 40.3 | 39.1 | 25.3 | |
Median | 4.0 | 8.0 | 12.0 | 8.0 | 6.0 | 35.0 | 42.0 | 41.5 | 40.0 | 26.0 | |
Standard deviation | 0.6 | 0.8 | 1.1 | 0.8 | 0.8 | 5.8 | 8.0 | 8.0 | 7.8 | 5.1 | |
Sintez (n = 172) | Min | 3.0 | 6.0 | 9.0 | 6.0 | 5.0 | 16.0 | 17.0 | 21.0 | 20.0 | 11.0 |
Max | 5.0 | 11.0 | 15.0 | 12.0 | 10.0 | 48.0 | 59.0 | 59.0 | 57.0 | 36.0 | |
Mean | 3.9 | 7.7 | 12.0 | 8.0 | 6.0 | 33.5 | 41.1 | 40.7 | 39.0 | 25.1 | |
Median | 4.0 | 8.0 | 12.0 | 8.0 | 6.0 | 34.0 | 43.0 | 42.0 | 41.0 | 26.0 | |
Standard deviation | 0.6 | 0.8 | 1.1 | 0.8 | 0.7 | 5.7 | 8.3 | 7.5 | 8.1 | 4.8 | |
Sintez (n = 300) | Min | 3.0 | 6.0 | 9.0 | 6.0 | 5.0 | 16.0 | 17.0 | 17.0 | 17.0 | 11.0 |
Max | 5.0 | 11.0 | 15.0 | 12.0 | 8.0 | 48.0 | 59.0 | 59.0 | 57.0 | 39.0 | |
Mean | 4.0 | 7.7 | 12.0 | 7.9 | 6.1 | 33.3 | 40.7 | 40.4 | 39.6 | 25.4 | |
Median | 4.0 | 8.0 | 12.0 | 8.0 | 6.0 | 34.0 | 42.0 | 43.0 | 40.0 | 26.0 | |
Standard deviation | 0.6 | 0.9 | 1.1 | 0.8 | 0.8 | 6.0 | 8.1 | 7.8 | 8.4 | 5.2 | |
Sintez (n = 1000) | Min | 3.0 | 6.0 | 9.0 | 6.0 | 5.0 | 16.0 | 17.0 | 17.0 | 17.0 | 11.0 |
Max | 5.0 | 11.0 | 15.0 | 12.0 | 10.0 | 48.0 | 59.0 | 59.0 | 57.0 | 39.0 | |
Mean | 3.9 | 7.7 | 12.0 | 7.9 | 6.1 | 33.5 | 40.7 | 40.5 | 39.1 | 25.5 | |
Median | 4.0 | 8.0 | 12.0 | 8.0 | 6.0 | 35.0 | 42.0 | 41.0 | 40.0 | 26.0 | |
Standard deviation | 0.6 | 0.8 | 1.1 | 0.8 | 0.8 | 5.7 | 8.0 | 7.7 | 7.6 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitriev, P.A.; Dmitrieva, A.A.; Kozlovsky, B.L. Random Reflectance: A New Hyperspectral Data Preprocessing Method for Improving the Accuracy of Machine Learning Algorithms. AgriEngineering 2025, 7, 90. https://doi.org/10.3390/agriengineering7030090
Dmitriev PA, Dmitrieva AA, Kozlovsky BL. Random Reflectance: A New Hyperspectral Data Preprocessing Method for Improving the Accuracy of Machine Learning Algorithms. AgriEngineering. 2025; 7(3):90. https://doi.org/10.3390/agriengineering7030090
Chicago/Turabian StyleDmitriev, Pavel A., Anastasiya A. Dmitrieva, and Boris L. Kozlovsky. 2025. "Random Reflectance: A New Hyperspectral Data Preprocessing Method for Improving the Accuracy of Machine Learning Algorithms" AgriEngineering 7, no. 3: 90. https://doi.org/10.3390/agriengineering7030090
APA StyleDmitriev, P. A., Dmitrieva, A. A., & Kozlovsky, B. L. (2025). Random Reflectance: A New Hyperspectral Data Preprocessing Method for Improving the Accuracy of Machine Learning Algorithms. AgriEngineering, 7(3), 90. https://doi.org/10.3390/agriengineering7030090