Vis/NIR Absorbance and Multivariate Analysis for Identifying Infusions of Herbal Teas Cultivated Organically
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Cultivation and Tea Infusion Preparation
2.2. Absorbance Measurements and Multivariate Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vogel, H.; González, B.; Razmilic, I. Boldo (Peumus boldus) cultivated under different light conditions, soil humidity and plantation density. Ind. Crop. Prod. 2011, 34, 1310–1312. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Mudau, F.N. Chemical compositions and mineral content of four selected South African herbal teas and the synergistic response of combined teas. Br. Food J. 2020, 122, 2769–2785. [Google Scholar] [CrossRef]
- Bączek, K.B.; Wiśniewska, M.; Przybył, J.L.; Kosakowska, O.; Węglarz, Z. Arbuscular mycorrhizal fungi in chamomile (Matricaria recutita L.) organic cultivation. Ind. Crop. Prod. 2019, 140, 111562. [Google Scholar] [CrossRef]
- Elbaz, M.; Abdesslem, S.B.; St-Gelais, A.; Boulares, M.; Moussa, O.B.; Timoumi, M.; Hassouna, M.; Aider, M. Essential oils profile, antioxidant and antibacterial potency of Tunisian fennel (Foeniculum vulgare Mill.) leaves grown under conventional and organic conditions. Food Chem. Adv. 2024, 4, 100734. [Google Scholar] [CrossRef]
- Buyukgoz, G.G.; Soforoglu, M.; Akgul, N.B.; Boyaci, I.H. Spectroscopic fingerprint of tea varieties by surface enhanced Raman spectroscopy. J. Food Technol. 2016, 53, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Hajiboland, R. Environmental and nutritional requirements for tea cultivation. Folia Hortic. 2017, 29, 199–220. [Google Scholar] [CrossRef]
- de Boer, C. Organic Lemon Grass—A Guide for Small Holders, 1st ed.; EPOPA: Bennekom, The Netherlands, 2005; pp. 1–28. [Google Scholar]
- Chaves, P.F.P.; Adami, E.R.; Acco, A.; Iacomini, M.; Cordeiro, L.M.C. Chemical characterization of polysaccharides from Baccharis trimera (Less.) DC. infusion and its hepatoprotective effects. Food Res. Int. 2020, 136, 109510. [Google Scholar] [CrossRef]
- Amran, S.A.; Hamah, N.; Wan Ishak, W.R.; Mohamad Ibrahim, M.N.; Ahmad, N.F.; Zawawi, M.H.; Abdullah, Z.; Safuan, S. Potential of functional drink fortified with plant extract as anti-diabetic agent: A systematic review. Nutrire 2024, 49, 43. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, L.; Ning, J.; Sun, Z.; Xu, Y.; Shi, Z.; Song, Q.; Lu, W.; Ma, W.; Mai, S.; et al. The consumption of non-sugar sweetened and ready-to-drink beverages as emerging types of beverages in Shanghai. Nutrients 2024, 16, 3547. [Google Scholar] [CrossRef]
- Li, C.; Guo, H.; Zong, B.; He, P.; Fan, F.; Gong, S. Rapid and non-destructive discrimination of special-grade flat green tea using near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 254–262. [Google Scholar] [CrossRef]
- Jin, J.; Deng, S.; Ying, X.; Ye, X.; Lu, T.; Hui, G. Study of herbal tea beverage discrimination method using electronic nose. J. Food Meas. Charact. 2015, 9, 52–60. [Google Scholar] [CrossRef]
- Alfatni, M.S.M.; Shariff, A.R.M.; Abdullah, M.Z.; Marhaban, M.H.B.; Saaed, O.M.B. The application of internal grading system technologies for agricultural products—Review. J. Food Eng. 2013, 1, 703–725. [Google Scholar] [CrossRef]
- Steidle Neto, A.J.; Lopes, D.C. Discrimination of powdered herbal teas by Vis/NIR spectral reflectance and chemometrics. Int. J. Food Eng. 2023, 19, 539–549. [Google Scholar] [CrossRef]
- Corrêdo, L.D.P.; Molin, J.P.; Canal Filho, R. Is it possible to measure the quality of sugarcane in real-time during harvesting using onboard NIR spectroscopy? AgriEngineering 2024, 6, 64–80. [Google Scholar] [CrossRef]
- Lopes, D.C.; Steidle Neto, A.J. Classification and authentication of plants by chemometric analysis of spectral data. In Comprehensive Analytical Chemistry, Vibrational Spectroscopy for Plant Varieties and Cultivars Characterization, 1st ed.; Barceló, D., Lopes, J., Sousa, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 105–122. [Google Scholar]
- Chen, Y.-L.; Yang, K.-M.; Shiao, X.-Y.; Huang, J.-J.; Ma, Y.-A.; Chiang, P.-Y. Relationship between Storage Quality and Functionality of Common Buckwheat (Fagopyrum esculentum Moench) and Tartary Buckwheat (Fagopyrum tataricum Gaertn) at Different Temperatures. AgriEngineering 2024, 6, 3121–3136. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.W. Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses. Trends. Food Sci. Technol. 2020, 104, 163–176. [Google Scholar] [CrossRef]
- Sheng, X.; Zan, J.; Jiang, Y.; Shen, S.; Li, L.; Yuan, H. Data fusion strategy for rapid prediction of moisture content during drying of black tea based on micro-NIR spectroscopy and machine vision. Optik 2023, 276, 170645. [Google Scholar] [CrossRef]
- Cardoso, V.G.K.; Poppi, R.J. Non-invasive identification of commercial green tea blends using NIR spectroscopy and support vector machine. Microchem. J. 2021, 164, 106052. [Google Scholar] [CrossRef]
- He, F.; Wu, X.; Wu, B.; Zeng, S.; Zhu, X. Green tea grades identification via Fourier transform near-infrared spectroscopy and weighted global fuzzy uncorrelated discriminant transform. J. Food Process. Eng. 2022, 45, e14109. [Google Scholar] [CrossRef]
- Liang, Y.R.; Ye, Q.; Jun, J.; Liang, H.; Lu, J.L.; Du, Y.Y.; Dong, J.J. Chemical and instrumental assessment of green tea sensory preference. Int. J. Food Prop. 2008, 11, 258–272. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, W.; Tang, Q.; Xu, W.; Tan, L.; Han, D.; Tian, Y.; Yuan, Y. A high-precision method evaluating color quality of Sichuan Dark Tea based on colorimeter combined with multi-layer perceptron. J. Food Process. Eng. 2020, 43, e13444. [Google Scholar] [CrossRef]
- Seetohul, L.N.; Islam, M.; O’Hare, W.T.; Ali, Z. Discrimination of teas based on total luminescence spectroscopy and pattern recognition. J. Sci. Food Agric. 2006, 86, 2092–2098. [Google Scholar] [CrossRef]
- Li, C.; Zong, B.; Guo, H.; Luo, Z.; He, P.; Gong, S.; Fan, F. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 227, 117697. [Google Scholar] [CrossRef] [PubMed]
- Vieira, T.F.; Makimori, G.Y.F.; Scholz, M.B.S.; Zielinski, A.A.F.; Bona, E. Chemometric approach using ComDim and PLS-DA for discrimination and classification of commercial yerba mate (Ilex paraguariensis St. Hil.). Food Anal. Methods 2020, 13, 97–107. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.d.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Kassahun, B.M.; Mekonnen, S.A.; Abedena, Z.T.; Kidanemariam, H.G.; Yalemtesfa, B.; Atnafu, G.; Melka, B.; Mengesha, W.K.; Silva, J.A.T. Performance of lemongrass (Cymbopogon citratus L.(DC) Stapf) agronomic and chemical traits in different agro-ecologies of Ethiopia. Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 133–138. [Google Scholar]
- Palácio, C.P.A.M.; Biasi, L.A.; Nakashima, T.; Serrat, B.M. Biomass and essential oil yield of carqueja (Baccharis trimera (Less) DC.) under different nitrogen source and levels. Rev. Bras. Plantas Med. 2007, 9, 58–63. [Google Scholar]
- Vaz, A.P.A.; Jorge, M.H.A. Boldo; Embrapa Transferência de Tecnologia Pantanal Semi-Árido: Campinas, Brazil, 2006. [Google Scholar]
- Bhasin, J.K.; Lasi, R. Fennel Seed: Processing Techniques and Medicinal Uses. In Recent Advances in Spices, Herbs and Plantation Crops; Morya, S., Bhasin, A., Eds.; Lovely Professional University: Phagwara, India, 2023; pp. 229–249. [Google Scholar]
- Ghareeb, Y.E.; Soliman, S.S.; Ismail, T.A.; Hassan, M.A.; Abdelkader, M.A.; Abdel Latef, A.A.H.; Al-Khayri, J.M.; ALshamrani, S.M.; Safhi, F.A.; Awad, M.F.; et al. Improvement of German chamomile (Matricaria recutita L.) for mechanical harvesting, high flower yield and essential oil content using physical and chemical mutagenesis. Plants 2022, 11, 2940. [Google Scholar] [CrossRef]
- Ma, L.M.; Dobhal, S.; Timmons, C. Dried Teas and Herbs. In The Microbiological Safety of Low Water Activity Foods and Spices. Food Microbiology and Food Safety; Gurtler, J., Doyle, M., Kornacki, J., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Steidle Neto, A.J.; Lopes, D.C. Exploring the optimum spectral bands and pre-treatments for chlorophyll assessment in sunflower leaves from yellowness index. Int. J. Remote Sens. 2021, 42, 9161–9177. [Google Scholar] [CrossRef]
- Saporta, G. Probabilités, Analyse des Données et Statistique; Technip: Paris, France, 2006; pp. 1–656. [Google Scholar]
- Agelet, L.E. Single Seed Discriminative Applications Using Near Infrared Technologies. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2011. [Google Scholar]
- Jayasinghea, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric. Forest Meteorol. 2019, 272–273, 102–117. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Galindo-Prieto, B.; Eriksson, L.; Trygg, J. Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J. Chemom. 2014, 28, 623–632. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Salkind, N.J. Encyclopedia of Measurement and Statistics; Sage: Thousand Oaks, CA, USA, 2007; pp. 1–1416. [Google Scholar]
- Li, X.; He, Y.; Wu, C.; Sun, D.W. Nondestructive measurement and fingerprint analysis of soluble solid content of tea soft drink based on Vis/NIR spectroscopy. J. Food Eng. 2007, 82, 316–323. [Google Scholar] [CrossRef]
- Li, X.; He, Y. Evaluation of least squares support vector machine regression and other multivariate calibrations in determination of internal attributes of tea beverages. Food Bioproc. Tech. 2010, 3, 651–661. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Prakash, I. The aroma, taste, color and bioactive constituents of tea. J. Med. Plant Res. 2011, 5, 2110–2124. [Google Scholar]
- Liu, P.; Wen, Y.; Huang, J.; Xiong, A.; Wen, J.; Li, H.; Huang, Y.; Zhud, X.; Ai, S.; Wu, R. A novel strategy of near-infrared spectroscopy dimensionality reduction for discrimination of grades, varieties and origins of green tea. Vib. Spectrosc. 2019, 105, 102984. [Google Scholar] [CrossRef]
- Panigrahi, N.; Bhol, C.S.; Das, B.S. Rapid assessment of black tea quality using diffuse reflectance spectroscopy. J. Food Eng. 2016, 190, 101–108. [Google Scholar] [CrossRef]
- Li, L.; Jin, S.; Wang, Y.; Shen, S.; Li, M.; Ma, Z.; Ning, J.; Zhang, Z. Potential of smartphone-coupled micro NIR spectroscopy for quality control of green tea. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 247, 119096. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Q.; Huang, X.; Fang, C.H. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine. J. Pharm. Biomed. Anal. 2006, 41, 1198–1204. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Discrimination between defective and non-defective roasted coffees by diffuse reflectance infrared Fourier transform spectroscopy. LWT 2012, 47, 505–511. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Q.; Yan, S.M.; Yang, Q.; Fu, H.Y.; She, Y.B. Fusion of elemental profiles and chemometrics: Discrimination of organic and conventional green teas. Microchem. J. 2019, 149, 104006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, D.C.; Steidle Neto, A.J. Vis/NIR Absorbance and Multivariate Analysis for Identifying Infusions of Herbal Teas Cultivated Organically. AgriEngineering 2025, 7, 80. https://doi.org/10.3390/agriengineering7030080
Lopes DC, Steidle Neto AJ. Vis/NIR Absorbance and Multivariate Analysis for Identifying Infusions of Herbal Teas Cultivated Organically. AgriEngineering. 2025; 7(3):80. https://doi.org/10.3390/agriengineering7030080
Chicago/Turabian StyleLopes, Daniela Carvalho, and Antonio José Steidle Neto. 2025. "Vis/NIR Absorbance and Multivariate Analysis for Identifying Infusions of Herbal Teas Cultivated Organically" AgriEngineering 7, no. 3: 80. https://doi.org/10.3390/agriengineering7030080
APA StyleLopes, D. C., & Steidle Neto, A. J. (2025). Vis/NIR Absorbance and Multivariate Analysis for Identifying Infusions of Herbal Teas Cultivated Organically. AgriEngineering, 7(3), 80. https://doi.org/10.3390/agriengineering7030080