Prediction of Foliar Nutrient Contents and Differentiation of Scion/Rootstock Combinations in Citrus via X-Ray Fluorescence Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Laboratory Analyses
2.3. Statistical Analyses and Predictive Model Development
3. Results
3.1. Descriptive Statistics of Nutrients in Citrus Scion/Rootstock Combinations
3.2. Comparison of pXRF Results in Fresh and Dried Leaves
3.3. Prediction of Chemical Composition in Citrus Leaves via pXRF
3.4. Prediction of Citrus Scion/Rootstock Combinations Using pXRF Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ALaqeel, N.K. Antioxidants from Different Citrus Peels Provide Protection against Cancer. Braz. J. Biol. 2024, 84, e271619. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.D.S.; Zucoloto, M.; Ferreira, L.D.S.; Barbosa, D.H.S.G.; Filho, W.D.S.S.; Passos, O.S. Physico-Chemical Characterization of Orange Fruits on Different Rootstocks. Rev. Bras. Frutic. 2023, 45, e-814. [Google Scholar] [CrossRef]
- IBGE. Indicadores IBGE: Levantamento Sistemático Da Produção Agrícola; IBGE: Brasília, Brazil, 2023.
- Fundecitrus. Estimativa Da Safra de Laranja 2024/25 Do Cinturão Citrícola de São Paulo e Triângulo/Sudoeste Mineiro: Cenário Em Maio/2024; Fundecitrus: Araraquara, Brazil, 2024. [Google Scholar]
- Stuchi, E.S.; Girardi, E.A.; Silva, S.R.; Sempionato, O.R.; Parolin, L.G.; Müller, G.W.; Donadio, L.C. Desempenho de Clones Pré-Imunizados de Laranjeiras Valência e Natal No Norte Do Estado de São Paulo. Citrus Res. Technol. 2020, 41, e1057. [Google Scholar] [CrossRef]
- Siqueira, D.L.; Salomão, L.C.C. Citros: Do Plantio à Colheita; UFV: Viçosa, Brazil, 2017. [Google Scholar]
- de Oliveira, C.T.; Rozane, D.E.; de Amorim, D.A.; de Souza, H.A.; Fernandes, B.S.; Natale, W. Diagnosis of the Nutritional Status of ‘Paluma’ Guava Trees Using Leaf and Flower Analysis. Rev. Bras. Frutic. 2020, 42, e-132. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Benedet, L.; de Araújo, E.F.; Carneiro, M.A.C.; Curi, N. A Proximal Sensor-Based Approach for Clean, Fast, and Accurate Assessment of the Eucalyptus spp. Nutritional Status and Differentiation of Clones. Plants 2023, 12, 561. [Google Scholar] [CrossRef]
- Acquah, G.E.; Hernandez-Allica, J.; Thomas, C.L.; Dunham, S.J.; Towett, E.K.; Drake, L.B.; Shepherd, K.D.; McGrath, S.P.; Haefele, S.M. Portable X-Ray Fluorescence (PXRF) Calibration for Analysis of Nutrient Concentrations and Trace Element Contaminants in Fertilisers. PLoS ONE 2022, 17, e0262460. [Google Scholar] [CrossRef]
- Antonangelo, J.; Zhang, H. Soil and Plant Nutrient Analysis with a Portable XRF Probe Using a Single Calibration. Agronomy 2021, 11, 2118. [Google Scholar] [CrossRef]
- Koch, J.; Chakraborty, S.; Li, B.; Kucera, J.M.; Van Deventer, P.; Daniell, A.; Faul, C.; Man, T.; Pearson, D.; Duda, B.; et al. Proximal Sensor Analysis of Mine Tailings in South Africa: An Exploratory Study. J. Geochem. Explor. 2017, 181, 45–57. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, S.; Jones, E.J.; Singh, B. Prediction of Soil Clay Content and Cation Exchange Capacity Using Visible Near-Infrared Spectroscopy, Portable X-Ray Fluorescence, and X-Ray Diffraction Techniques. Environ. Sci. Technol. 2021, 55, 4629–4637. [Google Scholar] [CrossRef]
- Song, J.; Shi, X.; Wang, H.; Lv, X.; Zhang, W.; Wang, J.; Li, T.; Li, W. Combination of Feature Selection and Geographical Stratification Increases the Soil Total Nitrogen Estimation Accuracy Based on Vis-NIR and PXRF Spectral Fusion. Comput. Electron. Agric. 2024, 218, 108636. [Google Scholar] [CrossRef]
- McGladdery, C.; Weindorf, D.C.; Chakraborty, S.; Li, B.; Paulette, L.; Podar, D.; Pearson, D.; Kusi, N.Y.O.; Duda, B. Elemental Assessment of Vegetation via Portable X-Ray Fluorescence (PXRF) Spectrometry. J. Environ. Manag. 2018, 210, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.S.; Weindorf, D.C.; Carvalho, G.S.; Guilherme, L.R.G.; Takayama, T.; Curi, N.; Lima, G.J.E.O.; Ribeiro, B.T. Foliar Elemental Analysis of Brazilian Crops via Portable X-Ray Fluorescence Spectrometry. Sensors 2020, 20, 2509–2525. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.H.G.; Berardo, M.C.; Rosado, L.R.; Andrade, R.; Teixeira, A.F.S.; Duarte, M.H.; Bócoli, F.A.; Carneiro, M.A.C.; Curi, N. Advancing Leaf Nutritional Characterization of Blueberry Varieties Adapted to Warm Climates Enhanced by Proximal Sensing. AgriEngineering 2024, 6, 3187–3202. [Google Scholar] [CrossRef]
- Costa Junior, G.T.; Nunes, L.C.; Feresin Gomes, M.H.; de Almeida, E.; Pereira de Carvalho, H.W. Direct Determination of Mineral Nutrients in Soybean Leaves under Vivo Conditions by Portable X-Ray Fluorescence Spectroscopy. X-Ray Spectrom. 2020, 49, 274–283. [Google Scholar] [CrossRef]
- Panebianco, S.; Mazzoleni, P.; Barone, G.; Musumarra, A.; Pellegriti, M.G.; Pulvirenti, A.; Scordino, A.; Cirvilleri, G. Feasibility study of tomato fruit characterization by fast XRF analysis for quality assessment and food traceability. Food Chem. 2022, 383, 132364. [Google Scholar] [CrossRef]
- Turner, A.; Chan, C.C.; Brown, M.T. Application of field-portable-XRF for the determination of trace elements in deciduous leaves from a mine-impacted region. Chemosphere 2018, 209, 928–934. [Google Scholar] [CrossRef]
- Silva, S.H.G.; Ribeiro, B.T.; Guerra, M.B.B.; de Carvalho, H.W.P.; Lopes, G.; Carvalho, G.S.; Guilherme, L.R.G.; Resende, M.; Mancini, M.; Curi, N.; et al. PXRF in Tropical Soils: Methodology, Applications, Achievements and Challenges. Adv. Agron. 2021, 167, 1–62. [Google Scholar] [CrossRef]
- Weindorf, D.C.; Chakraborty, S. Portable X-ray Fluorescence Spectrometry Analysis of Soils. Soil Sci. Soc. Am. J. 2020, 84, 1384–1392. [Google Scholar] [CrossRef]
- de Sá Júnior, A.; Carvalho, L.G. de Application of the Köppen Classification for Climatic Zoning in the State of Minas Gerais, Brazil. Theor. Appl. Climatol. 2012, 108, 1–7. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos. 5th. Embrapa Solos, Brasília Revista e Ampliada ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Mattos Júnior, D.; De Negri, J.D.; Pio, R.M.; Pompeu Júnior, J. Citros; IAC-Fundag: Campinas, Brazil, 2005. [Google Scholar]
- Quaggio, J.A.; Mattos, D., Jr.; Boaretto, R.M.; Zambrosi, F.C.B.; Cantarella, H. Citros (Gênero Citrus). In Boletim 100: Recomendações de Adubação e Calagem Para o Estado de São Paulo; Cantarella, H., Quaggio, J.A., Mattos, J.R.D., Boaretto, R.M., Van Raij, B., Eds.; IAC: Campinas, Brazil, 2022; pp. 187–198. [Google Scholar]
- Acosta, M.; Quiñones, A.; Munera, S.; de Paz, J.M.; Blasco, J. Rapid Prediction of Nutrient Concentration in Citrus Leaves Using Vis-NIR Spectroscopy. Sensors 2023, 23, 6530. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package “Corrplot”. Available online: https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (accessed on 4 December 2024).
- R Core Team. R: A Language and Environmental for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Lu, Q.; Tian, S.; Wei, L. Digital Mapping of Soil PH and Carbonates at the European Scale Using Environmental Variables and Machine Learning. Sci. Total Environ. 2023, 856, 159171. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, H. Comparing the Performance of Machine Learning Methods in Predicting Soil Seed Bank Persistence. Ecol. Inform. 2023, 77, 102188. [Google Scholar] [CrossRef]
- Shi, T.; He, L.; Wang, R.; Li, Z.; Hu, Z.; Wu, G. Digital Mapping of Heavy Metals in Urban Soils: A Review and Research Challenges. Catena 2023, 228, 107183. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine Learning and Remote Sensing Techniques Applied to Estimate Soil Indicators—Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Feeney, C.J.; Cosby, B.J.; Robinson, D.A.; Thomas, A.; Emmett, B.A.; Henrys, P. Multiple Soil Map Comparison Highlights Challenges for Predicting Topsoil Organic Carbon Concentration at National Scale. Sci. Rep. 2022, 12, 1379. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Liaquat, M.; Ali, I.; Ahmad, S.; Malik, A.M.; Ashraf, H.M.Q.; Parveen, N.; Tareen, M.J.; Saeed, T.; Shah, S.H.; Zulfiqar, B. Efficiency of exogenous zinc sulfate application reduced fruit drop and improved antioxidant activity of ‘Kinnow’ mandarin fruit. Braz. J. Biol. 2023, 83, e244593. [Google Scholar] [CrossRef]
- Hippler, F.W.R.; Boaretto, R.M.; Quaggio, J.A.; Boaretto, A.E.; Abreu-Junior, C.H.; Mattos, D., Jr. Uptake and distribution of soil-applied zinc by citrus trees—Addressing fertilizer use efficiency with 68Zn labeling. PLoS ONE 2015, 10, e0116903. [Google Scholar] [CrossRef]
- Hippler, F.W.R.; Boaretto, R.M.; Teixeira, L.A.J.; Quaggio, J.A.; Mattos, D., Jr. Copper supply and fruit yield of young Citrus trees: Fertiliser sources and application methods. Bragantia 2018, 77, 365–371. [Google Scholar] [CrossRef]
- Hippler, F.W.R.; Boaretto, R.M.; Quaggio, J.A.; Mattos, D., Jr. Copper in Citrus production: Required but avoided. Citrus Res. Technol. 2017, 38, 99–106. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Veloso, C.A.C.; Pereira, W.L.M.; Carvalho, E.J.M. Diagnose Nutricional Pela Análise Foliar de Pomares de Laranjeira No Nordeste Paraense. Rev. Ciência Agrária 2002, 38, 47–55. [Google Scholar]
- de Leão, M.G.A.; Marques Júnior, J.; de Souza, Z.M.; Siqueira, D.S.; Pereira, G.T. O Relevo Na Interpretação Da Variabilidade Espacial Dos Teores de Nutrientes Em Folha de Citros. Rev. Bras. Eng. Agrícola Ambient. 2010, 14, 1152–1159. [Google Scholar] [CrossRef]
- Gloaguen, T.V.; Reis, A.P.M.; Philippe, M.; Le Roux, G. Modeling soil moisture from in situ portable X-ray spectrometer measurements: A novel approach for correcting geochemical data across different environments and climatic conditions. Appl. Geochem. 2024, 170, 106066. [Google Scholar] [CrossRef]
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Advances in Portable X-Ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. Adv. Agron. 2014, 128, 1–45. [Google Scholar] [CrossRef]
- Nakano, K.; Tobari, S.; Shimizu, S.; Ito, T.; Itoh, A. Effect of Soil Moisture and Its Correction Method for Quantitative Analysis of Hazardous Metals in Polluted Soil for the On-site XRF Analysis. X-Ray Spectrom. 2022, 51, 101–108. [Google Scholar] [CrossRef]
- Rouillon, M.; Taylor, M.P. Can Field Portable X-Ray Fluorescence (PXRF) Produce High Quality Data for Application in Environmental Contamination Research? Environ. Pollut. 2016, 214, 255–264. [Google Scholar] [CrossRef]
- Schneider, A.R.; Cancès, B.; Breton, C.; Ponthieu, M.; Morvan, X.; Conreux, A.; Marin, B. Comparison of Field Portable XRF and Aqua Regia/ICPAES Soil Analysis and Evaluation of Soil Moisture Influence on FPXRF Results. J. Soils Sediments 2016, 16, 438–448. [Google Scholar] [CrossRef]
- Tavares, T.R.; Mouazen, A.M.; Alves, E.E.N.; Santos, F.R.; Melquiades, F.L.; Carvalho, H.W.P.; Molin, J.P. Assessing Soil Key Fertility Attributes Using a Portable X-Ray Fluorescence: A Simple Method to Overcome Matrix Effect. Agronomy 2020, 10, 787. [Google Scholar] [CrossRef]
- Ravansari, R.; Wilson, S.C.; Tighe, M. Portable X-Ray Fluorescence for Environmental Assessment of Soils: Not Just a Point and Shoot Method. Environ. Int. 2020, 134, 105250. [Google Scholar] [CrossRef]
- Ribeiro, B.T.; Weindorf, D.C.; Borges, C.S.; Guilherme, L.R.G.; Curi, N. Foliar Analysis via Portable X-Ray Fluorescence Spectrometry: Experimental Considerations. Spectrochim. Acta Part B At. Spectrosc. 2021, 186, 106320. [Google Scholar] [CrossRef]
- Zhou, S.; Cheng, Q.; Weindorf, D.C.; Yang, B.; Yuan, Z.; Yang, J. Determination of Trace Element Concentrations in Organic Materials of “Intermediate-Thickness” via Portable X-Ray Fluorescence Spectrometry. J. Anal. At. Spectrom. 2022, 37, 2461–2469. [Google Scholar] [CrossRef]
- da Costa, M.V.; Lima, G.J.d.O.; Guilherme, L.R.G.; Carneiro, M.A.C.; Ribeiro, B.T. Towards Direct and Eco-Friendly Analysis of Plants Using Portable X-Ray Fluorescence Spectrometry: A Methodological Approach. Chemosphere 2023, 339, 139613. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, A.; Jurowski, K. Portable X-Ray Fluorescence (PXRF) as a Powerful and Trending Analytical Tool for in Situ Food Samples Analysis: A Comprehensive Review of Application—State of the Art. TrAC—Trends Anal. Chem. 2023, 166, 117165. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier: London, UK, 2012; ISBN 9780123849052. [Google Scholar]
- Zhang, C.; Denka, S.; Cooper, H.; Mishra, D.R. Quantification of Sawgrass Marsh Aboveground Biomass in the Coastal Everglades Using Object-Based Ensemble Analysis and Landsat Data. Remote Sens. Environ. 2018, 204, 366–379. [Google Scholar] [CrossRef]
- Bag, R.; Mondal, I.; Dehbozorgi, M.; Bank, S.P.; Das, D.N.; Bandyopadhyay, J.; Pham, Q.B.; Fadhil Al-Quraishi, A.M.; Nguyen, X.C. Modelling and Mapping of Soil Erosion Susceptibility Using Machine Learning in a Tropical Hot Sub-Humid Environment. J. Clean. Prod. 2022, 364, 132428. [Google Scholar] [CrossRef]
- Costa, M.V.; Costa, E.T.S.; Oliveira, J.P.D.; Lima, G.J.O.; Guilherme, L.R.G.; Carvalho, G.S.; Duarte, M.H.; Chivale, J.J.; Weindorf, D.C.; Chakraborty, S.; et al. Assessment of coffee leaves nutritive value via portable X-ray fluorescence spectrometry and machine learning algorithms. Spectrochim. Acta Part B At. Spectrosc. 2024, 219, 106996. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1993. [Google Scholar]
- Appelhans, T.; Mwangomo, E.; Hardy, D.R.; Hemp, A.; Nauss, T. Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat. 2015, 14, 91–113. [Google Scholar] [CrossRef]
- Indahl, U.G.; Liland, K.H.; Næs, T. Canonical partial least squares—A unified PLS approach to classification and regression problems. J. Chemom. 2009, 23, 495–504. [Google Scholar] [CrossRef]
- Liland, K.H.; Indahl, U.G. Powered partial least squares discriminant analysis. J. Chemom. 2009, 23, 7–18. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H.; Stuetzle, W. Projection Pursuit Regression. J. Am. Stat. Assoc. 1981, 76, 817–823. [Google Scholar] [CrossRef]
- Ripley, B.D. Pattern Recognition and Neural Networks, 1st ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
Combination | Group | Scion | Rootstock | Planting Year | Age (Years) | Spacing (m) | Symbol |
---|---|---|---|---|---|---|---|
1 | Orange | Baianinha | Rangpur lime | 2016 | 7 | 5.5 × 2.5 | BLC |
2 | Cara Cara | Rangpur lime | 2016 | 7 | 5.5 × 2.5 | CCLC | |
3 | Folha Murcha | Rangpur lime and Swingle citrumelo | 2010 | 13 | 6.0 × 3.0 | MLCSW | |
4 | Natal | Rangpur lime | 2014 | 9 | 7.0 × 2.6 | NLC14 | |
5 | Natal | Rangpur lime | 2019 | 4 | 6.5 × 1.5 | NLC19 | |
6 | Natal | Índio citrandarin | 2019 | 4 | 6.5 × 1.5 | NCI | |
7 | Pêra | Rangpur lime | 2014 | 9 | 7.0 × 2.6 | PELC | |
8 | Rubi | Rangpur lime | 2020 | 3 | 6.5 × 1.5 | RLC | |
9 | Rubi | Swingle citrumelo | 2020 | 3 | 6.5 × 1.5 | RCSW | |
10 | Serra d’água | Swingle citrumelo | 2020 | 3 | 6.5 × 1.5 | SCSW | |
11 | Westin | Swingle citrumelo | 2020 | 3 | 6.5 × 1.5 | WCSW | |
12 | Mandarin | Ponkan | Rangpur lime | 2005 | 18 | 6.0 × 3.0 | PKLC05 |
13 | Ponkan | Rangpur lime | 2016 | 7 | 5.8 × 2.6 | PKLC16 | |
14 | Piemonte | Rangpur lime | 2016 | 7 | 5.5 × 2.5 | PILC | |
15 | Acid lime | Tahiti | Swingle citrumelo | 2020 | 3 | 6.5 × 3.0 | TCSW |
Element | Min 1 | Max 2 | Mean | Adequacy Classes | STD 3 | CV 4 (%) |
---|---|---|---|---|---|---|
P (g kg−1) | 1.0 | 2.9 | 1.7 | 1.2–1.6 | 0.1 | 17 |
K (g kg−1) | 8.7 | 25.3 | 16.2 | 10–15 | 0.6 | 16 |
Ca (g kg−1) | 23.8 | 61.1 | 37.3 | 35–50 | 1.3 | 14 |
Mg (g kg−1) | 0.9 | 5.9 | 2.8 | 3.5–5.0 | 0.2 | 18 |
S (g kg−1) | 1.6 | 5.1 | 3.0 | 2.0–3.0 | 0.2 | 13 |
Al (g kg−1) | 0.1 | 0.7 | 0.2 | - | 0.0 | 28 |
B (mg kg−1) | 42 | 233 | 101 | 50–150 | 11 | 21 |
Cu (mg kg−1) | 0 | 25 | 4 | 10–20 | 2 | 59 |
Fe (mg kg−1) | 94 | 359 | 170 | 50–150 | 12 | 20 |
Mn (mg kg−1) | 19 | 108 | 41 | 30–60 | 5 | 24 |
Zn (mg kg−1) | 12 | 144 | 30 | 35–70 | 7 | 36 |
Na (mg kg−1) | 89 | 306 | 193 | - | 9 | 14 |
Combination Scion/Rootstock 1 | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | |||||||||
BLC | 2.0 | 19 | 31 | 1.7 | 2.9 | 89 | 2 | 143 | 32 | 18 |
CCLC | 1.9 | 13 | 41 | 3.6 | 3.6 | 137 | 4 | 238 | 28 | 22 |
MLCSW | 1.4 | 14 | 39 | 2.8 | 3.6 | 172 | 7 | 162 | 68 | 85 |
NLC14 | 1.5 | 15 | 36 | 2.0 | 3.3 | 124 | 3 | 141 | 44 | 39 |
NLC19 | 1.3 | 17 | 39 | 1.7 | 3.0 | 100 | 4 | 193 | 50 | 38 |
NCI | 1.5 | 18 | 42 | 2.3 | 2.8 | 145 | 5 | 190 | 51 | 25 |
PELC | 1.2 | 18 | 41 | 2.1 | 3.8 | 120 | 6 | 147 | 54 | 51 |
RLC | 1.7 | 22 | 29 | 2.7 | 2.7 | 61 | 5 | 182 | 31 | 18 |
RCSW | 1.9 | 19 | 39 | 3.8 | 2.9 | 71 | 4 | 144 | 30 | 19 |
SCSW | 2.3 | 20 | 42 | 4.9 | 3.0 | 94 | 4 | 201 | 38 | 20 |
WCSW | 2.4 | 18 | 32 | 4.0 | 3.3 | 80 | 6 | 235 | 33 | 25 |
PKLC05 | 1.6 | 13 | 36 | 2.9 | 3.0 | 98 | 4 | 153 | 45 | 26 |
PKLC16 | 1.3 | 13 | 39 | 2.4 | 3.1 | 83 | 6 | 150 | 43 | 24 |
PILC | 1.5 | 11 | 36 | 1.8 | 2.9 | 81 | 1 | 118 | 36 | 25 |
TCSW | 1.6 | 16 | 37 | 3.6 | 1.9 | 59 | 3 | 153 | 26 | 16 |
Quaggio et al. [25] | 1.2–1.6 | 10–15 | 35–50 | 3.5–5.0 | 2.0–3.0 | 50–150 | 10–20 | 50–150 | 30–60 | 35–70 |
Method | Al (mg kg−1) | Ca (g kg−1) | Cl (mg kg−1) | Cr (mg kg−1) | Cu (mg kg−1) | Fe (mg kg−1) | K (g kg−1) | Mg (g kg−1) |
---|---|---|---|---|---|---|---|---|
pXRF Fresh | 1520 | 13.584 | 61 | 3 | 5 | 112 | 4.589 | 1.817 |
pXRF Dry | 1310 | 30.507 | 2633 | 2 | 7 | 217 | 12.484 | 0.159 |
ICP | 192 | 37.325 | -- | -- | 4 | 170 | 16.240 | 2.821 |
Method | Mn (mg kg−1) | P (g kg−1) | Rb (mg kg−1) | S (g kg−1) | Si (g kg−1) | Sr (mg kg−1) | Zn (mg kg−1) | |
pXRF Fresh | 14 | 0.342 | 4 | 0.729 | 1.013 | 113 | 14 | |
pXRF Dry | 37 | 0.856 | 9 | 1.446 | 1.191 | 231 | 29 | |
ICP | 41 | 1.680 | -- | 3.045 | -- | -- | 30 |
Element | Algorithm 1 | MAE | R2 | RMSE | RPD | Algorithm | MAE | R2 | RMSE | RPD |
---|---|---|---|---|---|---|---|---|---|---|
Fresh Leaves | Dry Leaves | |||||||||
Al | Cubist | 53.88 | 0.52 | 38.46 | 1.36 | Cubist | 29.60 | 0.84 | 22.44 | 2.47 |
B | PLS | 20.17 | 0.78 | 15.59 | 2.05 | Cubist | 18.09 | 0.81 | 14.17 | 2.29 |
Ca | PPR | 4160.17 | 0.58 | 3315.39 | 1.54 | PLS | 3380.15 | 0.76 | 2879.25 | 1.89 |
Cu | SVM | 1.48 | 0.63 | 1.23 | 1.66 | SVM | 0.87 | 0.88 | 0.74 | 2.81 |
Fe | Cubist | 33.05 | 0.55 | 25.97 | 1.50 | SVM | 23.66 | 0.77 | 18.97 | 2.10 |
K | Cubist | 2966.99 | 0.43 | 2424.43 | 1.33 | Cubist | 2259.60 | 0.71 | 1447.02 | 1.74 |
Mg | RF | 705.30 | 0.58 | 557.04 | 1.49 | Cubist | 532.19 | 0.74 | 393.16 | 1.98 |
Mn | Cubist | 7.44 | 0.77 | 5.77 | 2.07 | Cubist | 3.00 | 0.96 | 2.24 | 5.13 |
Na | RF | 39.00 | 0.35 | 33.14 | 1.24 | Cubist | 29.06 | 0.64 | 23.73 | 1.66 |
P | RF | 286.22 | 0.61 | 222.74 | 1.53 | Cubist | 158.56 | 0.87 | 122.28 | 2.76 |
S | PPR | 394.47 | 0.54 | 327.54 | 1.47 | PPR | 269.45 | 0.80 | 216.47 | 2.16 |
Zn | PLS | 5.56 | 0.87 | 4.16 | 2.67 | PLS | 2.96 | 0.96 | 2.11 | 5.01 |
Algorithm 1 | Fresh Leaves | Dry Leaves | ||
---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | |
C5.0 | 38 | 0.33 | 80 | 0.79 |
PLS | 53 | 0.50 | 91 | 0.90 |
RF | 53 | 0.50 | 91 | 0.90 |
SVM | 64 | 0.62 | 91 | 0.90 |
XGB | 33 | 0.29 | 07 | 0.00 |
TreeBAg | 51 | 0.48 | 78 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, M.F.d.M.; Pádua, E.J.d.; Reis, R.A.; Vilela, P.H.R.; Carneiro, M.A.C.; Curi, N.; Silva, S.H.G.; Baratti, A.C.C. Prediction of Foliar Nutrient Contents and Differentiation of Scion/Rootstock Combinations in Citrus via X-Ray Fluorescence Spectrometry. AgriEngineering 2025, 7, 79. https://doi.org/10.3390/agriengineering7030079
Rossi MFdM, Pádua EJd, Reis RA, Vilela PHR, Carneiro MAC, Curi N, Silva SHG, Baratti ACC. Prediction of Foliar Nutrient Contents and Differentiation of Scion/Rootstock Combinations in Citrus via X-Ray Fluorescence Spectrometry. AgriEngineering. 2025; 7(3):79. https://doi.org/10.3390/agriengineering7030079
Chicago/Turabian StyleRossi, Maíra Ferreira de Melo, Eduane José de Pádua, Renata Andrade Reis, Pedro Henrique Reis Vilela, Marco Aurélio Carbone Carneiro, Nilton Curi, Sérgio Henrique Godinho Silva, and Ana Claudia Costa Baratti. 2025. "Prediction of Foliar Nutrient Contents and Differentiation of Scion/Rootstock Combinations in Citrus via X-Ray Fluorescence Spectrometry" AgriEngineering 7, no. 3: 79. https://doi.org/10.3390/agriengineering7030079
APA StyleRossi, M. F. d. M., Pádua, E. J. d., Reis, R. A., Vilela, P. H. R., Carneiro, M. A. C., Curi, N., Silva, S. H. G., & Baratti, A. C. C. (2025). Prediction of Foliar Nutrient Contents and Differentiation of Scion/Rootstock Combinations in Citrus via X-Ray Fluorescence Spectrometry. AgriEngineering, 7(3), 79. https://doi.org/10.3390/agriengineering7030079