Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Dataset and Analysis of Hydrological Variables
2.3. Experimental Design and Treatments Details
2.4. Monitoring Soil Moisture Using an IoT System
2.5. Calibration and Validation of Sensors in the Laboratory
2.6. Growth Parameters Measurement
2.7. Physiological Parameters Measurement
2.8. Determination of Soil Physical and Chemical Parameters
2.9. Determination of Yield and Yield Components
2.10. Water Productivity and Water Saving Assessment
2.11. Statistical Analysis
3. Results
3.1. Temporal and Spatial Variations in Hydrological Parameters
3.2. Accuracy and Precision of Probes Calibration
3.3. Variation in Soil Water Content During AWD Irrigation
3.4. Variation in Growth Parameters
3.5. Variation in Physiological Parameters
3.6. Analysis of Soil Physical and Chemical Properties
3.7. Analysis of Yield and Yield Components
3.8. Analysis of Water Productivity and Water Saving Across Treatments
3.9. Regression Analysis
3.10. Correlation Analysis
4. Discussion
4.1. Interpretation of Probes Validation Results
4.2. Insitghts into Soil Water ContentVariation During AWD Irrigation
4.3. Interpretation of Growth Parameters Trend
4.4. Interpretation of Variation in Physiological Parameters
4.5. Elucidation of Soil Physical and Chemical Properties
4.6. Inference on Yield and Yield Components
4.7. Explanation of Water Productivity and Water Saving
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 7, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Tian, Z.; Rao, Y.; Dong, G.; Yang, Y.; Huang, L.; Leng, Y.; Xu, J.; Sun, C.; Zhang, G.; et al. Rational design of high-yield and superior-quality rice. Nat. Plants 2017, 3, 17031. [Google Scholar] [CrossRef]
- Kondamudi, R.; Swamy, K.N.; Chakravarthy, D.V.N.; Vishnuprasanth, V.; Rao, Y.V.; Rao, P.R.; Sarla, N.; Subrahmanyam, D.; Voleti, S.R. Heat Stress in Rice—Physiological Mechanisms and Adaptation Strategies. In Crop Stress and its Management: Perspectives and Strategies; Venkateswarlu, A.K., Shanker, C., Shanker, M., Maheswari, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 193–224. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Gulliford, J.; Nielsen, D.; Rice, C.W.; Van Pelt, R.S. Adapting agriculture to drought and extreme events. J. Soil Water Conserv. 2012, 67, 162A–166A. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tuan, L.M.; Minamikawa, K.; Yokoyama, S. Assessment of the relationship between adoption of a knowledge-intensive water-saving technique and irrigation conditions in the Mekong Delta of Vietnam. Agric. Water Manag. 2019, 212, 162–171. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products; Value of Water Research Report Series No. 47; UNESCO-IHE: Delft, The Netherlands, 2010. [Google Scholar]
- Yan, T.; Wang, J.; Huang, J. Urbanization, agricultural water use, and regional and national crop production in China. Ecol. Model. 2015, 318, 226–235. [Google Scholar] [CrossRef]
- FAO. 15 Years in Afghanistan: A Special Report: 2003–2018; Food and Agriculture Organization of the United Nations: Quebec, QC, Canada, 2018. [Google Scholar]
- Sediqui, N.; Amin, M.W.; Dawlatzai, N.; Gulab, G.; Poyesh, D.S.; Terada, N.; Sanada, A.; Kamata, A.; Koshio, K. Elucidation of Shoot and Root Growth, Physiological Responses, and Quality Traits of Tomato (Solanum lycopersicon L.) Exposed to Elevated Calcium Carbonate Concentrations. Horticulturae 2024, 10, 573. [Google Scholar] [CrossRef]
- Hashimi, R.; Matsuura, E.; Komatsuzaki, M. Effects of Cultivating Rice and Wheat with and without Organic Fertilizer Application on Greenhouse Gas Emissions and Soil Quality in Khost, Afghanistan. Sustainability 2020, 12, 6508. [Google Scholar] [CrossRef]
- Feng, Z.; Leung, L.R.; Hagos, S.; Houze, R.A.; Burleyson, C.D.; Balaguru, K. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 2016, 7, 13429. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, E.-G.; Park, J.-R.; Ryu, Y.-H.; Moon, W.; Park, G.-H.; Ubaidillah, M.; Ryu, S.-N.; Kim, K.-M. Effect on Chemical and Physical Properties of Soil Each Peat Moss, Elemental Sulfur, and Sulfur-Oxidizing Bacteria. Plants 2021, 10, 1901. [Google Scholar] [CrossRef]
- Suzuki, S.; Watanabe, S.; Omar, A.I.; Watanabe, F.; Shimada, S. Preliminary study on improvement of soil water retention characteristics by Spirulina. Jpn. Assoc. Arid Land Stud. 2022, 32, 49–52. [Google Scholar] [CrossRef]
- Abbas, F.; Siddique, T.; Fan, R.; Azeem, M. Role of Gypsum in Conserving Soil Moisture Macronutrients Uptake and Improving Wheat Yield in the Rainfed Area. Water 2023, 15, 1011. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Aziz, A.A.; Mosharrof, M. Impact of Organic Amendment with Alternate Wetting and Drying Irrigation on Rice Yield, Water Use Efficiency and Physicochemical Properties of Soil. Agronomy 2021, 11, 1529. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Wu, Q.; Gong, X.; Zhang, Z.; Chen, Y.; Chen, T.; Siddique, K.H.M.; Chi, D. Zeolite increases paddy soil potassium fixation, partial factor productivity, and potassium balance under alternate wetting and drying irrigation. Agric. Water Manag. 2022, 260, 107294. [Google Scholar] [CrossRef]
- Dawar, K.; Khalil, Z.; Mian, I.A.; Khan, B.; Ali, S.; Rahi, A.A.; Tahir, M.S.; Ahmed, N.; Fahad, S.; Danish, S.; et al. Effects of Farmyard Manure and Different Phosphorus Inorganic Fertilizer Application Rates on Wheat Cultivation in Phosphorus-Deficient Soil. Sustainability 2022, 14, 9030. [Google Scholar] [CrossRef]
- Mosharrof, M.; Uddin, M.K.; Jusop, S.; Sulaiman, M.F.; Shamsuzzaman, S.M.; Haque, A.N.A. Integrated use of biochar and lime as a tool to improve maize yield and mitigate CO2 emission: A review. Chil. J. Agric. Res. 2021, 81, 109–118. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Najafi-Ghiri, M. Effects of zeolite and vermicompost applications on potassium release from calcareous soils. Soil Water Res. 2014, 9, 31–37. [Google Scholar] [CrossRef]
- Kima, A.; Chung, W.; Wang, Y.-M. Improving Irrigated Lowland Rice Water Use Efficiency under Saturated Soil Culture for Adoption in Tropical Climate Conditions. Water 2014, 6, 2830–2846. [Google Scholar] [CrossRef]
- Nie, L.; Peng, S.; Chen, M.; Shah, F.; Huang, J.; Cui, K.; Xiang, J. Aerobic rice for water-saving agriculture. A review. Agron. Sustain. Dev. 2012, 32, 411–418. [Google Scholar] [CrossRef]
- Berkhout, E.; Glover, D.; Kuyvenhoven, A. On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps. Agric. Syst. 2015, 132, 157–166. [Google Scholar] [CrossRef]
- Qin, J.; Wang, X.; Hu, F.; Li, H. Growth and physiological performance responses to drought stress under non-flooded rice cultivation with straw mulching. Plant Soil Environ. 2010, 56, 51–59. [Google Scholar] [CrossRef]
- Nalley, L.; Linquist, B.; Kovacs, K.; Anders, M. The Economic Viability of Alternative Wetting and Drying Irrigation in Arkansas Rice Production. Agron. J. 2015, 107, 579–587. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Belder, P.; Spiertz, J.H.J.; Bouman, B.A.M.; Lu, G.; Tuong, T.P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef]
- Zarai, B.; Khaskhoussy, K.; Zouari, M.; Souguir, D.; Khammeri, Y.; Moussa, M.; Hachicha, M. Smart control of soil water and salt content for improving irrigation management of tomato crop field: Kairouan area. Environ. Monit. Assess. 2023, 195, 1408. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Kashif, M.; Fati, S.M.; Bahaj, S.A.; Chaudhry, H. A Revisit of Internet of Things Technologies for Monitoring and Control Strategies in Smart Agriculture. Agronomy 2022, 12, 127. [Google Scholar] [CrossRef]
- Said Mohamed, E.; Belal, A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Thomas, V.; Ramzi, A.M. SRI contributions to rice production dealing with water management constraints in northeastern Afghanistan. Paddy Water Environ. 2011, 9, 101–109. [Google Scholar] [CrossRef]
- World Weather Online. Statistics of Rainfall and Temperature of Baghlan Province. Available online: https://www.worldweatheronline.com/Baghlan-weather-averages/Baghlan/af.aspx (accessed on 23 December 2024).
- FAO. Islamic Republic of Afghanistan Soil Atlas; FAO: Quebec, QC, Canada, 2020. [Google Scholar] [CrossRef]
- Kimberly, S.; Daniel, S. (NASA/GSFC/HSL) FLDAS2 Noah-MP GDAS Land Surface Model L4 Central Asia Daily 0.01 × 0.01 Degree, Greenbelt, MD, USA. Goddard Earth Sciences Data and Information Services Center (GES DISC). 2023. Available online: https://disc.gsfc.nasa.gov/datasets (accessed on 20 June 2024).
- Manju, G.; Syam Kishor, K.S.; Binson, V.A. An IoT-Enabled Real-Time Crop Prediction System Using Soil Fertility Analysis. Eng 2024, 5, 2496–2510. [Google Scholar] [CrossRef]
- Amin, M.W.; Aryan, S.; Habibi, N.; Kakar, K.; Zahid, T. Elucidation of photosynthesis and yield performance of rice (Oryza sativa L.) under drought stress conditions. Plant Physiol. Rep. 2022, 27, 143–151. [Google Scholar] [CrossRef]
- Hines, J.W.; Garvey, D. Process and equipment monitoring methodologies applied to sensor calibration monitoring. Qual. Reliab. Eng. Int. 2007, 23, 123–135. [Google Scholar] [CrossRef]
- Louki, I.I.; Al-Omran, A.M. Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation. Agronomy 2022, 13, 51. [Google Scholar] [CrossRef]
- Long, H.; Daniel, W. Monitoring Soil Moisture Level for Precision Irrigation in Apple Orchards. 2024. Available online: https://extension.psu.edu/monitoring-soil-moisture-level-for-precision-irrigation-in-apple-orchards (accessed on 12 September 2024).
- Pham, V.B.; Diep, T.T.; Fock, K.; Nguyen, T.S. Using the Internet of Things to promote alternate wetting and drying irrigation for rice in Vietnam’s Mekong Delta. Agron. Sustain. Dev. 2021, 41, 43. [Google Scholar] [CrossRef]
- Li, W.; Awais, M.; Ru, W.; Shi, W.; Ajmal, M.; Uddin, S.; Liu, C. Review of Sensor Network-Based Irrigation Systems Using IoT and Remote Sensing. Adv. Meteorol. 2020, 10, 8396164. [Google Scholar] [CrossRef]
- Narendrakumar, C.; Pradeep, M.; Rajeswaran, N.; Lawrence, T.S. Sensor Based Smart Monitoring and Controlling System for Cultivation using Labview. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3687–3689. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The use of vermicompost in organic farming: Overview, effects on soil and economics: The use of vermicompost in organic farming. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Oyege, I.; Balaji Bhaskar, M.S. Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of Photosynthesis by Biochar and Vermicompost to Enhance Tomato (Solanum lycopersicum L.) Yield under Greenhouse Conditions. Plants 2022, 11, 3214. [Google Scholar] [CrossRef] [PubMed]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Wijitkosum, S. Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. Int. Soil Water Conserv. Res. 2022, 10, 335–341. [Google Scholar] [CrossRef]
- Alegre, J.C.; Pashanasi, B.; Lavelle, P. Dynamics of Soil Physical Properties in Amazonian Agroecosystems Inoculated with Earthworms. Soil Sci. Soc. Am. J. 1996, 60, 1522–1529. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management Science and Technology, 3rd ed.; Earthscan: London, UK, 2009; pp. 211–215. [Google Scholar]
- Ramesh, K.; Reddy, D.D. Zeolites and Their Potential Uses in Agriculture. Adv. Agron. 2011, 113, 219–241. [Google Scholar] [CrossRef]
- Tuong, P.; Bouman, B.A.M.; Mortimer, M. More Rice, Less Water—Integrated Approaches for Increasing Water Productivity in Irrigated Rice-Based Systems in Asia. Plant Prod. Sci. 2005, 8, 231–241. [Google Scholar] [CrossRef]
- Mboyerwa, P.; Kibret, K.; Mtakwa, P.; Aschalew, A. Evaluation of Growth, Yield, and Water Productivity of Paddy Rice with Water-Saving Irrigation and Optimization of Nitrogen Fertilization. Agronomy 2021, 11, 1629. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Aslam, Z.; Rafiq, M.; Abbas, A.; Saqib, M.; Rauf, A.; Hano, C.; El-Esawi, M.A. Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab-Pakistan. Agronomy 2021, 11, 1151. [Google Scholar] [CrossRef]
Variables | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|
Precipitation | 0.01° | Daily | https://disc.gsfc.nasa.gov/datasets (accessed on 20 June 2024) [39] |
Evapotranspiration | 0.01° | Daily | |
Root zone soil moisture (0–40 cm) | 0.01° | Daily | |
Air temperature | 0.01° | Daily |
Factor-I Water Management (WM) | Factor-II Soil Amendments (SA) | Treatment Combinations with Abbreviation Forms |
---|---|---|
Continuous flooding | Soil without amendment | CF + S + WA |
Vermicompost + peatmoss (VC = 1.55% + PM = 7.80%) | CF + VC + PM | |
Spirulina powder (SPP = 0.5%) | CF + SPP | |
Gypsum (GS = 1.2%) | CF + GS | |
Rice husk biochar (RHB = 1.7%) | CF + RHB | |
Zeolite (ZL = 2%) | CF + ZL | |
Alternate wetting and drying | Soil without amendment | AWD + S + WA |
Vermicompost + peatmoss (VC = 1.55% + PM = 7.80%) | AWD + VC + PM | |
Spirulina powder (SPP = 0.5%) | AWD + SPP | |
Gypsum (GS = 1.2%) | AWD + GS | |
Rice husk biochar (RHB = 1.7%) | AWD + RHB | |
Zeolite (ZL = 2%) | AWD + ZL |
Treatment Combination | Plant Height (cm) | Tiller Number | Productive Tiller | Flag Leaf Area | Root Length (cm) |
---|---|---|---|---|---|
CF + (S + SW) | 84.94 6.19 d | 4.75 1.48 cd | 3.75 1.16 cd | 39.04 2.38 d | 37.50 3.25 fg |
CF + (S + VC + PM) | 114.62 3.37 a | 15.75 2.37 a | 14.25 1.75 a | 70.38 2.80 a | 51.25 1.85 a |
CF + (S + SPP) | 104.12 12.13 a–d | 5.12 2.23 b–d | 4.37 1.50 cd | 52.53 5.11 bc | 40.90 1.63 d–f |
CF + (S + GS) | 98.12 8.01 b–e | 7.12 2.56 b–d | 6.37 2.38 bc | 56.62 2.27 b | 46.12 bc |
CF + (S + RHB) | 102.56 4.68 a–d | 8.87 1.12 b | 7.87 0.83 b | 75.17 5.45 a | 46.00 3.77 bc |
CF + (S + ZL) | 93.12 7.72 c–e | 6.75 1.41 b–d | 5.00 1.60 b–d | 52.15 6.79 bc | 43.43 2.00 c–e |
AWD + (S + SW) | 86.06 13.76 d | 3.25 1.29 d | 2.75 1.58 d | 36.94 2.94 d | 36.18 4.55 g |
AWD + (S + VC + PM) | 112.75 2.25 ab | 15.25 2.12 a | 13.25 2.05 a | 69.50 3.12 a | 49.93 1.42 ab |
AWD + (S + SPP) | 90.25 8.01 de | 5.00 2.31 b–d | 2.25 1.03 d | 51.01 5.61 bc | 39.31 2.91 e–g |
AWD + (S + GS) | 95.87 17.23 c–e | 6.25 3.70 b–d | 4.75 3.05 cd | 51.57 6.44 bc | 44.25 2.72 cd |
AWD + (S + RHB) | 107.50 9.44 a–c | 8.00 2.77 bc | 6.37 1.92 bc | 72.60 5.25 a | 45.81 0.99 bc |
AWD + (S + ZL) | 97.75 4.82 b–e | 6.00 1.64 b–d | 5.37 1.19 bc | 48.60 2.78 c | 42.57 2.18 c–e |
WM | ns (0.00) | ns (0.00) | * (0.09) | * (0.08) | * (0.05) |
SA | *** (0.50) | *** (0.74) | *** (0.82) | *** (0.89) | *** (0.76) |
WM SA | * (0.12) | ns (0.05) | ns (0.08) | ns (0.02) | ns (0.01) |
Shoot | Root | |||
---|---|---|---|---|
Treatment Combination | Fresh Weight (g) | Dry Weight (g) | Fresh Weight (g) | Dry Weight (g) |
CF + (S + SW) | 28.19 7.19 de | 9.49 3.07 de | 5.64 2.12 e | 0.54 0.52 g |
CF + (S + VC + PM) | 142.93 7.28 a | 44.18 1.72 a | 36.30 4.21 a | 20.16 2.72 a |
CF + (S + SPP) | 11.58 c | 12.48 4.26 cd | 17.53 5.70 c | 3.22 1.52 d–f |
CF + (S + GS) | 86.37 7.45 b | 26.00 2.74 b | 30.53 3.30 b | 6.25 1.21 c |
CF + (S + RHB) | 85.68 6.24 b | 25.75 2.29 b | 11.30 4.15 d | 2.37 1.25 e–g |
CF + (S + ZL) | 62.19 4.19 c | 17.10 1.54 c | 21.05 2.21 c | 5.39 1.17 cd |
AWD + (S + SW) | 19.51 6.51 d | 6.23 2.08 e | 1.73 1.03 e | 0.54 0.45 d |
AWD + (S + VC + PM) | 137.43 13.76 a | 41.16 5.06 a | 31.48 2.67 ab | 17.06 1.72 b |
AWD + (S + SPP) | 35.33 4.33 d | 7.22 1.59 e | 5.65 2.41 e | 1.71 0.94 fg |
AWD + (S + GS) | 82.19 9.66 b | 24.46 3.55 b | 22.46 4.35 c | 4.81 1.11 cd |
AWD + (S + RHB) | 84.27 6.68 b | 25.23 2.45 b | 6.68 2.03 de | 1.96 0.75 e–g |
AWD + (S + ZL) | 58.55 5.56 c | 15.76 2.04 c | 18.55 2.00 c | 4.14 1.04 c-e |
WM | ** (0.14) | *** (0.17) | *** (0.48) | *** (0.22) |
SA | *** (0.96) | *** (0.94) | *** (0.92) | *** (0.95) |
WM SA | ns (0.07) | ns (0.07) | ** (0.20) | ns (0.11) |
Treatment Combination | Chlorophyll Content | Pn (µmol CO2 µmol ) | ) | E (μmol CO2 μmol ) | gs (mol CO2 mol ) | WUEPn/E |
---|---|---|---|---|---|---|
CF + (S + SW) | 35.16 2.55 cd | 9.27 1.97 d | 71.13 4.60 f | 6.27 0.16 ef | 0.27 0.02 de | 1.48 0.33 cd |
CF + (S + VC + PM) | 41.85 0.59 a | 27.69 4.65 a | 282.75 11.04 a | 13.82 1.29 a | 0.46 0.04 a | 2.02 0.42 a–d |
CF + (S + SPP) | 37.32 2.61 b–d | 16.79 3.98 c | 97.09 5.88 e | 7.46 0.34 d | 0.36 0.0 9 bc | 2.26 0.59 a–c |
CF + (S + GS) | 37.4 2.34 b–d | 25.69 6.15 ab | 249.64 11.80 b | 9.76 0.21 b | 0.40 0.04 b | 2.63 0.66 a |
CF + (S + RHB) | 37.72 2.40 b–d | 20.76 3.44 bc | 180.26 6.62 d | 8.55 0.27 c | 0.37 0.02 bc | 2.42 0.40 ab |
CF + (S + ZL) | 37.81 1.94 b–d | 21.85 3.83 bc | 195.94 12.19 c | 8.32 c | 0.36 0.02 bc | 2.61 0.51 a |
AWD + (S + SW) | 34.21 2.92 d | 7.57 2.77 d | 70.27 3.53 fh | 5.41 0.40 f | 0.24 0.02 ef | 1.39 0.48 d |
AWD + (S + VC + PM) | 41.09 1.33 ab | 7.79 2.58 d | 86.65 5.23 e | 5.88 0.46 ef | 0.26 0.02 de | 1.32 0.39 d |
AWD + (S + SPP) | 35.90 2.47 cd | 6.70 2.06 d | 66.50 6.39 fh | 4.51 0.44 h | 0.19 0.02 fg | 1.51 0.55 cd |
AWD + (S + GS) | 36.96 2.61 cd | 9.04 3.76 d | 85.56 5.75 e | 6.46 0.50 e | 0.32 0.03 cd | 1.40 0.60 d |
AWD + (S + RHB) | 36.95 3.37 cd | 6.13 1.80 d | 38.56 4.13 g | 4.41 0.31 h | 0.18 0.02 fg | 1.39 0.43 d |
AWD + (S + ZL) | 38.4 1.32 a–c | 3.97 0.75 d | 58.44 6.20 h | 2.27 0.33 i | 0.14 0.02 g | 1.78 0.44 b–d |
WM | ns (0.02) | *** (0.23) | *** (0.22) | *** (0.95) | *** (0.81) | *** (0.41) |
SA | *** (0.47) | *** (0.17) | *** (0.16) | *** (0.91) | *** (0.62) | *** (0.21) |
WM SA | ns (0.02) | *** (01.7) | *** (0.17) | *** (0.85) | *** (0.48) | * (0.12) |
Treatment Combination | ) | ) | ) | pH | ) | ST (°C) | SOM% | SOC% | BD (g cm−3) |
---|---|---|---|---|---|---|---|---|---|
CF + (S + SW) | 15.21 0.18 c | 10.01 0.18 hi | 126.62 4.03 c | 6.83 0.12 b–d | 870.62 9.03 f | 36.02 0.58 ef | 5.08 0.08 d | 2.95 0.53 d | 1.17 0.00 a |
CF + (S + VC + PM) | 30.76 4.80 a | 16.41 0.18 a | 152.12 1.18 b | 6.58 0.27 d | 1136.87 a | 35.60 0.35 f | 8.65 0.18 a | 5.02 0.10 a | 0.84 0.05 h |
CF + (S + SPP) | 17.26 0.22 bc | 12.07 0.21 de | 127.12 1.64 c | 6.80 0.27 b–d | 945.00 12.88 c–e | 37.12 0.38 c | 6.33 0.14 c | 3.67 0.08 c | 1.11 0.05 b–d |
CF + (S + GS) | 15.08 0.43 c | 10.70 0.18 gh | 126.37 1.50 c | 7.22 0.21 a | 901.25 10.26 ef | 38.62 0.40 b | 5.22 0.09 d | 3.02 d | 1.05 0.04 d–f |
CF + (S + RHB) | 18.51 0.18 b | 13.41 c | 168.62 6.36 a | 6.91 0.09 bc | 1001.25 18.07 b | 39.05 ab | 5.91 0.06 c | 3.42 0.03 c | 0.92 0.03 g |
CF + (S + ZL) | 15.66 1.18 bc | 12.71 0.18 cd | 148.62 3.06 b | 6.95 0.09 ab | 980.62 9.03 bc | 39.90 a | 6.24 0.05 c | 3.62 0.31 c | 0.93 0.03 g |
AWD + (S + SW) | 14.73 0.72 c | 9.88 0.74 i | 122.87 1.45 c | 6.64 0.21 cd | 857.87 13.53 f | 34.00 0.55 g | 4.80 0.23 d | 2.78 0.13 d | 1.12 0.02 a–c |
AWD + (S + VC + PM) | 30.26 3.50 a | 15.48 b | 153.00 2.32 b | 6.70 0.33 b–d | 1115.00 15.76 a | 36.12 0.11 d–f | 7.28 0.12 b | 4.22 0.07 b | 0.93 0.00 g |
AWD + (S + SPP) | 17.59 0.46 bc | 11.51 0.18 ef | 126.62 5.31 c | 6.74 0.23 b–d | 935.00 7.79 de | 36.85 0.40 c–e | 4.12 0.07 f | 2.39 0.04 f | 1.16 0.03 ab |
AWD + (S + GS) | 15.21 0.18 c | 10.01 0.18 hi | 127.12 3.18 c | 6.25 0.10 e | 860.62 9.03 f | 37.02 0.36 cd | 4.26 0.07 f | 2.47 0.04 f | 1.08 0.01 c–e |
AWD + (S + RHB) | 18.26 0.41 b | 12.53 0.47 d | 166.12 7.45 a | 6.60 0.66 d | 978.12 b–d | 39.60 a | 4.55 0.07 e | 2.64 0.43 e | 1.02 0.02 f |
AWD + (S + ZL) | 15.82 1.13 bc | 11.21 0.18 fg | 147.37 1.92 b | 6.70 0.79 b–d | 920.62 9.03 e | 39.35 ab | 3.75 0.07 g | 2.17 0.04 g | 1.04 0.04 ef |
WM | ns (0.00) | *** (0.47) | ns (0.01) | *** (0.42) | *** (0.24) | *** (0.21) | *** (0.97) | *** (0.97) | *** (0.37) |
SA | *** (0.91) | *** (0.95) | *** (0.95) | ns (0.10) | *** (0.92) | *** (0.90) | *** (0.99) | *** (0.99) | *** (0.87) |
WM SA | ns (0.00) | * (0.20) | ns (0.02) | *** (0.52) | ns (0.10) | *** (0.44) | *** (0.91) | *** (0.91) | *** (0.40) |
Treatment Combination | Number of Panicles | Number of Filled Grains | Number of Unfilled Grains | Total Number of Grains | 1000-Grain Weight (g) | Grain Yield (g) | Harvest Index |
---|---|---|---|---|---|---|---|
CF + (S + SW) | 7.50 0.92 f | 67.00 2.20 e | 12.00 4.27 de | 79.00 2.39 gh | 24.99 0.10 ef | 6.30 2.06 de | ab |
CF + (S + VC + PM) | 22.25 1.66 a | 82.37 3.24 c | 13.75 6.04 c–e | 96.12 4.29 cd | 26.67 0.20 ab | 31.27 3.61 a | 0.33 0.02 a |
CF + (S + SPP) | 11.00 1.19 cd | 75.37 1.92 d | 11.75 4.02 de | 87.12 2.35 ef | 25.31 0.25 de | 8.35 2.91 c–e | ab |
CF + (S + GS) | 10.00 1.06 de | 82.00 2.00 c | 9.00 1.19 e | 91.00 2.13 de | 25.62 0.33 cd | 13.44 5.21 bc | ab |
CF + (S + RHB) | 13.00 1.30 bc | 89.25 1.83 ab | 18.87 2.64 b–d | 108.12 1.80 b | 26.11 0.27 bc | 18.34 1.82 b | 0.33 0.02 a |
CF + (S + ZL) | 14.00 1.30 b | 93.00 2.72 a | 30.75 4.55 a | 123.75 6.06 a | 26.82 0.12 a | 12.49 4.03 c | a |
AWD + (S + SW) | 4.62 0.51 g | 54.50 5.26 f | 18.75 5.20 b–d | 73.25 4.46 h | 24.60 0.23 f | 2.71 2.21 e | b |
AWD + (S + VC + PM) | 20.25 2.12 a | 75.37 4.37 d | 16.12 4.69 c–e | 91.50 4.37 c–e | 26.01 0.59 c | 25.97 4.29 a | a |
AWD + (S + SPP) | 7.00 1.06 f | 67.87 3.68 e | 15.12 3.72 c–e | 83.00 3.92 fg | 25.00 0.49 ef | 3.82 e | b |
AWD + (S + GS) | 8.00 1.19 ef | 71.12 2.74 de | 16.12 4.32 c–e | 87.25 3.37 ef | 25.21 0.52 de | 8.42 2.34 c–e | b |
AWD + (S + RHB) | 10.00 1.30 de | 73.12 2.58 d | 24.37 4.65 ab | 97.50 4.44 c | 25.77 0.35 cd | 11.92 3.16 cd | ab |
AWD + (S + ZL) | 12.00 1.30 b–d | 87.00 2.39 bc | 20.87 4.08 bc | 107.87 4.18 b | 25.78 cd | 13.44 bc | a |
WM | *** (0.54) | *** (0.75) | * (0.07) | *** (0.51) | *** (0.38) | *** (0.25) | ** (0.15) |
SA | *** (0.94) | *** (0.90) | *** (0.53) | *** (0.92) | *** (0.75) | *** (0.85) | *** (0.40) |
WM SA | ns (0.08) | *** (0.27) | *** (0.29) | *** (0.27) | * (0.13) | * (0.12) | ns (0.10) |
Treatment Combination | Water Use (L pot−3) | Number of Irrigation (n) | Water Productivity (kg m−3) | (%) Water Saved Relative to CF (%) |
---|---|---|---|---|
CF + (S + SW) | 29.75 2.37 hi | 33.37 3.54 f | 0.41 0.12 b–d | - |
CF + (S + VC + PM) | 141.60 4.56 a | 131.50 1.72 a | 0.44 0.05 b–d | - |
CF + (S + SPP) | 2.50 g | 61.25 5.72 e | 0.42 0.14 b–d | - |
CF + (S + GS) | 62.42 3.97 e | 81.62 5.12 c | 0.43 0.05 b–d | - |
CF + (S + RHB) | 79.69 2.28 c | 100.75 b | 0.46 0.16 a–c | - |
CF + (S + ZL) | 48.68 1.88 f | 70.25 5.28 d | 0.51 0.19 ab | - |
AWD + (S + SW) | 26.68 2.40 i | 27.50 1.60 e | 0.28 0.07 cd | 10.29 |
AWD + (S + VC + PM) | 122.57 2.61 b | 126.12 a | 0.42 0.11 b–d | 13.44 |
AWD + (S + SPP) | 34.09 1.10 h | 56.37 3.85 e | 0.22 d | 15.16 |
AWD + (S + GS) | 48.05 2.58 f | 70.37 5.26 d | 0.35 0.09 b–d | 23.02 |
AWD + (S + RHB) | 68.03 2.33 d | 81.87 3.90 c | 0.35 0.12 b–d | 14.63 |
AWD + (S + ZL) | 40.32 2.19 g | 61.87 3.68 e | 0.66 3.18 a | 17.19 |
WM | *** (0.80) | *** (0.49) | * (0.06) | |
SA | *** (0.99) | *** (0.97) | *** (0.32) | |
WM SA | *** (0.52) | * (0.21) | * (0.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.W.; Sediqui, N.; Azizi, A.H.; Joya, K.; Amin, M.S.; Mahmoodzada, A.B.; Aryan, S.; Suzuki, S.; Irie, K.; Mihara, M. Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring. AgriEngineering 2025, 7, 69. https://doi.org/10.3390/agriengineering7030069
Amin MW, Sediqui N, Azizi AH, Joya K, Amin MS, Mahmoodzada AB, Aryan S, Suzuki S, Irie K, Mihara M. Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring. AgriEngineering. 2025; 7(3):69. https://doi.org/10.3390/agriengineering7030069
Chicago/Turabian StyleAmin, Mohammad Wasif, Naveedullah Sediqui, Abdul Haseeb Azizi, Khalid Joya, Mohammad Sohail Amin, Abdul Basir Mahmoodzada, Shafiqullah Aryan, Shinji Suzuki, Kenji Irie, and Machito Mihara. 2025. "Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring" AgriEngineering 7, no. 3: 69. https://doi.org/10.3390/agriengineering7030069
APA StyleAmin, M. W., Sediqui, N., Azizi, A. H., Joya, K., Amin, M. S., Mahmoodzada, A. B., Aryan, S., Suzuki, S., Irie, K., & Mihara, M. (2025). Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring. AgriEngineering, 7(3), 69. https://doi.org/10.3390/agriengineering7030069