Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Field Sampling of Chemical and Physical Soil Parameters
2.4. Flight Planning and Image Acquisition Data
2.5. Soil Fertility Parameters Classification
2.6. Fertility Input Addition Information Survey
2.7. Gathering and Analyzing Multispectral Images
2.8. Model Development and Statistical Analysis for Variable Extraction
2.9. Spatial Analysis
3. Results
3.1. Descriptive Statistics and Change Detection of Soil Parameters
3.2. Information on Fertility Inputs
3.3. Spatial Model of Nutrient Addition to Agricultural Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghizadeh-Mehrjardi, R. Agropedogenesis: Humankind as the 6th soil-forming factor and attractors of agrogenic soil degradation. Geophys. Res. Abstr. 2019, 49, 1–42. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and syntheses: Agropedogenesis-Humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 2019, 16, 4783–4803. [Google Scholar] [CrossRef]
- Homburg, J.A.; Sandor, J.A.; Norton, J.B. Anthropogenic influences on Zuni agricultural soils. Geoarchaeology 2005, 20, 661–693. [Google Scholar] [CrossRef]
- Alori, E.T.; Adekiya, A.O.; Adegbite, K.A. Impact of Agricultural Practices on Soil Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 89–98. [Google Scholar] [CrossRef]
- Moran, E.F.; Brondizio, E.S.; Tucker, J.M.; da Silva-Forsberg, M.C.; McCracken, S.; Falesi, I. Effects of soil fertility and land-use on forest succession in Amazônia. For. Ecol. Manag. 2000, 139, 93–108. [Google Scholar] [CrossRef]
- Ghimire, R.; Thapa, V.R.; Acharya, P.; Wang, J.; Sainju, U.M. Soil Indicators and Management Strategies for Environmental Sustainability. In Soil Science: Fundamentals to Recent Advances; Springer: Berlin/Heidelberg, Germany, 2021; pp. 127–140. [Google Scholar] [CrossRef]
- Fonte, S.J.; Vanek, S.J.; Oyarzun, P.; Parsa, S.; Quintero, D.C.; Rao, I.M.; Lavelle, P. Pathways to Agroecological Intensification of Soil Fertility Management by Smallholder Farmers in the Andean Highlands. Adv. Agron. 2012, 116, 125–184. [Google Scholar] [CrossRef]
- Visscher, A.M.; Vanek, S.; Huaraca, J.; Mendoza, J.; Ccanto, R.; Meza, K.; Olivera, E.; Scurrah, M.; Wellstein, C.; Bonari, G.; et al. Traditional soil fertility management ameliorates climate change impacts on traditional Andean crops within smallholder farming systems. Sci. Total Environ. 2024, 912, 168725. [Google Scholar] [CrossRef]
- Rao, D.L.N.; Dey, P.; Reddy, K.S. Plant demand adapted fertilization in organic and precision farming. In Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 137–166. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.J.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Hatfield, P.L.; Pinter, P.J. Remote sensing for crop protection. Crop Prot. 1993, 12, 403–413. [Google Scholar] [CrossRef]
- Pizarro, S.; Pricope, N.G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; Alejandro, L.; Achallma, L.; Gonzalez, I.; Salazar, W.; et al. Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery. Remote Sens. 2023, 15, 3203. [Google Scholar] [CrossRef]
- Sharma, R.P.; Chattaraj, S.; Jangir, A.; Tiwari, G.; Dash, B.; Daripa, A.; Naitam, R.K. Geospatial variability mapping of soil nutrients for site specific input optimization in a part of central India. Agron. J. 2022, 114, 1489–1499. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Näsi, R.; Mikkola, H.; Honkavaara, E.; Koivumäki, N.; Oliveira, R.A.; Peltonen-Sainio, P.; Keijälä, N.-S.; Änäkkälä, M.; Arkkola, L.; Alakukku, L. Can Basic Soil Quality Indicators and Topography Explain the Spatial Variability in Agricultural Fields Observed from Drone Orthomosaics? Agronomy 2023, 13, 669. [Google Scholar] [CrossRef]
- Ragazzo, A.V.; Mei, A.; Fontinovo, G. Unmanned aircraft systems and satellite technologies for topsoil mapping in precision agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1-W1-2023, 417–422. [Google Scholar] [CrossRef]
- Khalesi, F.; Daponte, P.; De Vito, L.; Picariello, F.; Tudosa, I. UAV in Precision Agriculture: A Preliminary Assessment of Uncertainty for Vegetation Health Index. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2022—Proceedings 2022, Perugia, Italy, 3–5 November 2022; pp. 94–99. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Wang, M.; Fan, Q.; Tian, H.; Qiao, X.; Li, Y. Applications of UAS in Crop Biomass Monitoring: A Review. Front. Plant Sci. 2021, 12, 616689. [Google Scholar] [CrossRef]
- Villoslada Peciña, M.; Bergamo, T.F.; Ward, R.D.; Joyce, C.B.; Sepp, K. A novel UAV-based approach for biomass prediction and grassland structure assessment in coastal meadows. Ecol. Indic. 2021, 122, 107227. [Google Scholar] [CrossRef]
- Martinez, A.; Mosquera, L.; Jatsun, S.; Emelyanova, O. UAV Soil Sampling in Andean Highlands for Precision Agriculture. Smart Innov. Syst. Technol. 2023, 331, 375–387. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, J.; Li, B.; Qin, C.; Ji, W.; Xu, Y.; Huang, Y. High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sens. 2023, 15, 1433. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Gelaw, A.; Singh, B.R.; Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Mahasneh, H. Drones in Agriculture: Real-World Applications and Impactful Case Studies. J. Nat. Sci. Rev. 2024, 2, 643–656. [Google Scholar] [CrossRef]
- Parida, P.K.; Somasundaram, E.; Krishnan, R.; Radhamani, S.; Sivakumar, U.; Parameswari, E.; Raja, R.; Rangasami, S.R.S.; Sangeetha, S.P.; Selvi, R.G. Unmanned Aerial Vehicle-Measured Multispectral Vegetation Indices for Predicting LAI, SPAD Chlorophyll, and Yield of Maize. Agriculture 2024, 14, 1110. [Google Scholar] [CrossRef]
- Pamuji, R.; Mahardika, A.I.; Wiranda, N.; Alkaf, N.; Saputra, B.; Adini, M.H.; Pramatasari, D. Utilizing Electromagnetic Radiation in Remote Sensing for Vegetation Health Analysis Using NDVI Approach with Sentinel-2 Imagery. Kasuari Phys. Educ. J. (KPEJ) 2023, 6, 127–135. [Google Scholar] [CrossRef]
- Sashikkumar, M.C.; Selvam, S.; Karthikeyan, N.; Ramanamurthy, J.; Venkatramanan, S.; Singaraja, C. Remote Sensing for Recognition and Monitoring of Vegetation Affected by Soil Properties. J. Geol. Soc. India 2017, 90, 609–615. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Zhou, F.; Huang, Z.; Yao, Y. More Precise Monitoring of Soil Moisture Content in Agricultural Fields by Upscaling Conversion of Multispectral Image Data From Unmanned Aerial Vehicles. IEEE Access 2024, 12, 79892–79904. [Google Scholar] [CrossRef]
- Urquizo, J.; Ccopi, D.; Ortega, K.; Castañeda, I.; Patricio, S.; Passuni, J.; Figueroa, D.; Enriquez, L.; Ore, Z.; Pizarro, S. Estimation of Forage Biomass in Oat (Avena sativa) Using Agronomic Variables through UAV Multispectral Imaging. Remote Sens. 2024, 16, 3720. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Houška, J.; Volánek, J.; Abebrese, D.K.; Cervenka, J. Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field. Sci. Total Environ. 2023, 870, 161973. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Srivastava, S.; Singh, P.; Gupta, A.; Dugesar, V. Chapter 2—Soil Chemical Properties Estimation Using Hyperspectral Remote Sensing: A Review; Earth Observation for Monitoring and Modeling Land Use; Elsevier: Amsterdam, The Netherlands, 2025; pp. 25–43. [Google Scholar] [CrossRef]
- Yuan, J.; Gao, J.; Yu, B.; Yan, C.; Ma, C.; Xu, J.; Liu, Y. Estimation of soil organic matter content based on spectral indices constructed by improved Hapke model. Geoderma 2024, 443, 116823. [Google Scholar] [CrossRef]
- Ravikumar, S.; Vellingiri, G.; Sellaperumal, P.; Pandian, K.; Sivasankar, A.; Sangchul, H. Real-time nitrogen monitoring and management to augment N use efficiency and ecosystem sustainability–A review. J. Hazard. Mater. Adv. 2024, 16, 100466. [Google Scholar] [CrossRef]
- Heil, J.; Jörges, C.; Stumpe, B. Fine-Scale Mapping of Soil Organic Matter in Agricultural Soils Using UAVs and Machine Learning. Remote Sens. 2022, 14, 3349. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Zhao, J.; Wan, S. Artificial Intelligence and Hyperspectral Modeling for Soil Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 67–91. [Google Scholar] [CrossRef]
- Rolando, J.; Dubeux, J.C., Jr.; Perez, W.; Ramirez, D.; Turin, C.; Ruiz-Moreno, M.; Comeford, N.; Mares, V.; Garcia, S.; Quiroz, R. Soil organic carbon stocks and fractionation under different land uses in the Peruvian high-Andean Puna. Geoderma 2017, 307, 65–72. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, L.; Xu, R.; He, X.; Mo, W.; Xu, J. Assessing Spatial Variation and Driving Factors of Available Phosphorus in a Hilly Area (Gaozhou, South China) Using Modeling Approaches and Digital Soil Mapping. Agriculture 2023, 13, 1–18. [Google Scholar] [CrossRef]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Data fusion approach for map-based variable-rate nitrogen fertilization in barley and wheat. Soil Tillage Res. 2021, 205, 104789. [Google Scholar] [CrossRef]
- Cáceres, Y.Z.; Torres, B.C.; Archi, G.C.; Mallqui, R.Z.; Pinedo, L.E.; Trucios, D.C.; Ortega Quispe, K.A. Analysis of Soil Quality through Aerial Biomass Contribution of Three Forest Species in Relict High Andean Forests of Peru. Malays. J. Soil Sci. 2024, 28, 38–52. [Google Scholar]
- Instituto Geofísico del Perú. Atlas Climático de Precipitación y Temperatura del aire en la Cuenca del Río Mantaro; Instituto Geofísico del Perú: Junín, Perú, 2005. [Google Scholar]
- Brus, D.J.; Kempen, B.; Heuvelink, G.B.M. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–407. [Google Scholar] [CrossRef]
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. ISO: Geneva, Switzerland, 1994. Available online: https://www.iso.org/es/contents/data/standard/01/92/19243.html (accessed on 17 October 2024).
- NOM-021-RECNAT-2000; Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. FAOLEX: Rome, Italy, 2000. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC050674/ (accessed on 17 October 2024).
- Castellanos, J. Manual de Interpretación de Analisis de Suelos y Aguas. 2024. Available online: https://www.intagri.com/public_files/Interpretacion-de-Analisis-de-Suelos-y-Aguas.pdf (accessed on 13 October 2024).
- Demir, S.; Başyiğit, L. Evaluating Bare Soil Properties and Vegetation Indices for Digital Farming Applications from UAV-based Multispectral Images. Data Sci. Appl. 2023, 6, 5–10. [Google Scholar]
- Dindaroğlu, T.; Kılıç, M.; Günal, E.; Gündoğan, R.; Akay, A.E.; Seleiman, M. Multispectral UAV and satellite images for digital soil modeling with gradient descent boosting and artificial neural network. Earth Sci. Inform. 2022, 15, 2239–2263. [Google Scholar] [CrossRef]
- Fávero, L.P.; Belfiore, P.; de Freitas Souza, R. Classification and regression trees. In Data Science, Analytics and Machine Learning with R; Academic Press: Cambridge, MA, USA, 2023; pp. 371–401. [Google Scholar] [CrossRef]
- Kumar, A.; Sinha, S.; Saurav, S. Random forest, CART, and MLR-based predictive model for unconfined compressive strength of cement reinforced clayey soil: A comparative analysis. Asian J. Civ. Eng. 2024, 25, 2307–2323. [Google Scholar] [CrossRef]
- Akshay, R.; Reddy, N.; Nidhi, S.S.; Rajasekaran, V.A. Applications of UAV in the agriculture field. Appl. Comput. Eng. 2023, 6, 441–446. [Google Scholar] [CrossRef]
- Montezano, Z.F.; Corazza, E.J.; Muraoka, T. Variabilidade espacial da fertilidade do solo em área cultivada e manejada homogeneamente. Rev. Bras. Cienc. Solo 2006, 30, 839–847. [Google Scholar] [CrossRef]
- Rathore, T.S. Factors Responsible for Spatial Distribution of Enzyme Activity in Soil. In Climate Change and Microbial Diversity: Advances and Challenges; Routledge: London, UK, 2022; pp. 143–161. [Google Scholar] [CrossRef]
- Raimi, H.S.M.; Shahrul, N.N.A.; Ismail, T.N.H.T.; Ali, R.; Shaheed, R.; Yusop, F.M. The Influence of Compost Bin Volume and Effective Microorganisms (EM) Quantity for Efficient Food Waste Composting. J. Adv. Res. Micro Nano Eng. 2024, 16, 70–84. [Google Scholar] [CrossRef]
- Li, Z.-C.; Song, Z.-L.; Yang, X.-M.; Song, A.-L.; Yu, C.-X.; Wang, T.; Xia, S.; Liang, Y.-C. Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands. J. Integr. Agric. 2018, 17, 2182–2195. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Q.; Zheng, C.; Wang, Y.; Chen, H.; Dong, S.; Hu, X. The impact of microbial inoculants on large-scale composting of straw and manure under natural low-temperature conditions. Bioresour. Technol. 2024, 400, 130696. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Gade, A.; Ingle, P.; Nimbalkar, U.; Rai, M.; Raut, R.; Vedpathak, M.; Jagtap, P.; Abd-Elsalam, K.A. Nanofertilizers: The Next Generation of Agrochemicals for Long-Term Impact on Sustainability in Farming Systems. Agrochemicals 2023, 2, 257–278. [Google Scholar] [CrossRef]
- Roba, T.B.; Roba, T.B. Review on: The Effect of Mixing Organic and Inorganic Fertilizer on Productivity and Soil Fertility. Open Access Libr. J. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- da Silva, L.I.; Pereira, M.C.; de Carvalho, A.M.X.; Buttrós, V.H.; Pasqual, M.; Dória, J. Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture 2023, 13, 462. [Google Scholar] [CrossRef]
- Brevik, E.C.; Sauer, T.J. The past, present, and future of soils and human health studies. SOIL 2015, 1, 35–46. [Google Scholar] [CrossRef]
- Liu, J.; Xie, W.; Yang, J.; Yao, R.; Wang, X.; Li, W. Effect of Different Fertilization Measures on Soil Salinity and Nutrients in Salt-Affected Soils. Water 2023, 15, 3274. [Google Scholar] [CrossRef]
- Martín-Merino, M. Fusing Heterogeneous Data Sources Considering a Set of Equivalence Constraints; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Fu, Z.; Qin, Q.; Luo, B.; Sun, H.; Wu, C. HOMPC: A Local Feature Descriptor Based on the Combination of Magnitude and Phase Congruency Information for Multi-Sensor Remote Sensing Images. Remote Sens. 2018, 10, 1234. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J Big Data 2016, 3, 1345–1459. [Google Scholar] [CrossRef]
- Nguyen, T.; Khadka, R.; Phan, N.; Yazidi, A.; Halvorsen, P.; Riegler, M.A. Combining datasets to increase the number of samples and improve model fitting. arXiv 2022. [Google Scholar] [CrossRef]
- Abdi, D.; Tremblay, G.F.; Ziadi, N.; Bélanger, G.; Parent, L.-É. Predicting Soil Phosphorus-Related Properties Using Near-Infrared Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 2318–2326. [Google Scholar] [CrossRef]
- Folorunso, O.; Ojo, O.; Busari, M.; Adebayo, M.; Joshua, A.; Folorunso, D.; Ugwunna, C.O.; Olabanjo, O.; Olabanjo, O. Exploring Machine Learning Models for Soil Nutrient Properties Prediction: A Systematic Review. Big Data Cogn. Comput. 2023, 7, 113. [Google Scholar] [CrossRef]
- Karray, E.; Elmannai, H.; Toumi, E.; Gharbia, M.H.; Meshoul, S.; Aichi, H.; Ben Rabah, Z. Evaluating the Potentials of PLSR and SVR Models for Soil Properties Prediction Using Field Imaging, Laboratory VNIR Spectroscopy and Their Combination. Comput. Model. Eng. Sci. 2023, 136, 1399–1425. [Google Scholar] [CrossRef]
- Kouadio, L.; Deo, R.C.; Byrareddy, V.; Adamowski, J.F.; Mushtaq, S.; Phuong Nguyen, V. Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Comput. Electron. Agric. 2018, 155, 324–338. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, L.; Zhuang, Q.; Chen, D.; Sun, T. Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning. Agriculture 2023, 13, 1592. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C.; Sahoo, S.; Govind, A. Prediction of soil nutrients through PLSR and SVMR models by VIs-NIR reflectance spectroscopy. Egypt. J. Remote Sens. Space Sci. 2023, 26, 901–918. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Jia, G.; Tian, J.; Jin, S.; Liang, S.; Liu, Y. The Impact and Correction of Sensitive Environmental Factors on Spectral Reflectance Measured In Situ. Remote Sens. 2023, 15, 5332. [Google Scholar] [CrossRef]
- Milton, E.J. Review article: Principles of field spectroscopy. Int J Remote Sens 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Rossini, M.; Meroni, M.; Celesti, M.; Cogliati, S.; Julitta, T.; Panigada, C.; Rascher, U.; Van der Tol, C.; Colombo, R. Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data. Remote Sens. 2016, 8, 412. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Advancing the science and practice of ecological nutrient management for smallholder farmers. Front. Sustain. Food Syst. 2022, 6, 921216. [Google Scholar] [CrossRef]
- Jiachen, H.; Jing, H.; Gang, L.; Weile, L.; Zhe, L.; Zhi, L. Inversion analysis of soil nitrogen content using hyperspectral images with different preprocessing methods. Ecol. Inform. 2023, 78, 102381. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Song, Q.; Gao, X.; Song, Y.; Li, Q.; Chen, Z.; Li, R.; Zhang, H.; Cai, S. Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging. Sci. Rep. 2023, 13, 14097. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Gu, X.; Chen, T.; Sun, Q.; Zhang, S.; Pan, Y. High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones 2023, 7, 290. [Google Scholar] [CrossRef]
- Yang, X.; Bao, N.; Li, W.; Liu, S.; Fu, Y.; Mao, Y. Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry. Sensors 2021, 21, 3919. [Google Scholar] [CrossRef]
- Rehman, H.U.; Knadel, M.; de Jonge, L.W.; Moldrup, P.; Greve, M.H.; Arthur, E. Comparison of Cation Exchange Capacity Estimated from Vis–NIR Spectral Reflectance Data and a Pedotransfer Function. Vadose Zone J. 2019, 18, 1–8. [Google Scholar] [CrossRef]
ID | Flight Date | Flight Extension (ha) | Flight Height (m) | Images Acquired |
---|---|---|---|---|
01 | 12 August 2022 | 137.3430 | 150 | 8355 |
02 | 28 August 2022 | 123.9733 | 150 | 5365 |
03 | 14 September 2022 | 126.6630 | 150 | 4972 |
04 | 15 August 2023 | 161.9183 | 150 | 1715 |
05 | 27 August 2023 | 165.9676 | 150 | 1845 |
06 | 8 September 2023 | 166.8823 | 150 | 1840 |
Parameter | Range | ||||
---|---|---|---|---|---|
Very Low | Low | Medium | High | Very High | |
Total nitrogen (N) (ppm) | <0.10 | 0.10–0.20 | 0.20–0.40 | 0.40–0.60 | >0.60 |
Phosphorus (P) (ppm) | <5.5 | 5.5–11 | >11 | ||
Potassium (K) (ppm) | <120 | 120–240 | 240–480 | >480 | |
Electrical conductivity (EC) (mSm−1) | <2.0 | 2.0–4.0 | 4.0–8.0 | 8.0–16.0 | >0.16 |
Organic matter (OM) (%) | <0.5 | 0.6–1.5 | 1.6–3.5 | 3.6–6.0 | >6.0 |
Parameter | Mean | Maximum | Minimum | Standard Deviation | Change (%) | ||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | Mean | |
N (ppm) | 0.115 | 0.12 | 0.229 | 1.19 | 0.074 | 0.04 | 0.02 | 0.076 | 0.002 |
P (ppm) | 30.121 | 44.987 | 57.881 | 192.61 | 7.761 | 6.619 | 7.473 | 22.091 | −0.538 |
K (ppm) | 109.342 | 100.409 | 335.42 | 292.7 | 57.88 | 5.4 | 41.171 | 48.974 | 0.998 |
OM (%) | 2.295 | 2.349 | 4.57 | 7.99 | 1.48 | 0.7 | 0.403 | 1.54 | 0.992 |
EC (mS/m) | 3.786 | 2.832 | 9.37 | 6.8 | 1.58 | 1.4 | 1.553 | 0.693 | 0.14 |
Soil Property | N | P | K | OM | EC | ||
---|---|---|---|---|---|---|---|
Model | CART | RF | CART | CART | CART | ||
Training | 2022 | R-squared | 0.82 | 0.89 | 0.55 | 0.81 | 0.89 |
RMSE | 0.01 | 3.68 | 27.70 | 0.20 | 0.51 | ||
MAE | 5.36 | 1.20 | 0.00 | 0.05 | 0.03 | ||
2023 | R-squared | 0.71 | 0.83 | 0.65 | 0.70 | 0.73 | |
RMSE | 0.20 | 5.65 | 15.41 | 0.56 | 0.48 | ||
MAE | 4.28 | 0.97 | 0.03 | 0.01 | 0.08 | ||
2022–2023 | R-squared | 0.63 | 0.64 | 0.58 | 0.68 | 0.64 | |
RMSE | 0.02 | 17.47 | 29.74 | 0.43 | 0.64 | ||
MAE | 0.01 | 10.69 | 18.62 | 0.29 | 0.42 | ||
Testing | 2022 | R-squared | 0.84 | 0.89 | 0.72 | 0.84 | 0.86 |
RMSE | 0.01 | 3.71 | 28.49 | 0.22 | 0.53 | ||
MAE | 6.18 | 1.17 | 0.00 | 0.04 | 0.03 | ||
2023 | R-squared | 0.77 | 0.88 | 0.65 | 0.79 | 0.74 | |
RMSE | 0.07 | 2.21 | 23.17 | 0.12 | 0.44 | ||
MAE | 4.20 | 0.97 | 0.13 | 0.08 | 0.07 | ||
2022–2023 | R-squared | 0.53 | 0.58 | 0.59 | 0.56 | 0.54 | |
RMSE | 0.03 | 18.86 | 33.30 | 0.57 | 0.80 | ||
MAE | 0.02 | 11.84 | 21.16 | 0.37 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enriquez, L.; Ortega, K.; Ccopi, D.; Rios, C.; Urquizo, J.; Patricio, S.; Alejandro, L.; Oliva-Cruz, M.; Barboza, E.; Pizarro, S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering 2025, 7, 70. https://doi.org/10.3390/agriengineering7030070
Enriquez L, Ortega K, Ccopi D, Rios C, Urquizo J, Patricio S, Alejandro L, Oliva-Cruz M, Barboza E, Pizarro S. Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering. 2025; 7(3):70. https://doi.org/10.3390/agriengineering7030070
Chicago/Turabian StyleEnriquez, Lucia, Kevin Ortega, Dennis Ccopi, Claudia Rios, Julio Urquizo, Solanch Patricio, Lidiana Alejandro, Manuel Oliva-Cruz, Elgar Barboza, and Samuel Pizarro. 2025. "Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru" AgriEngineering 7, no. 3: 70. https://doi.org/10.3390/agriengineering7030070
APA StyleEnriquez, L., Ortega, K., Ccopi, D., Rios, C., Urquizo, J., Patricio, S., Alejandro, L., Oliva-Cruz, M., Barboza, E., & Pizarro, S. (2025). Detecting Changes in Soil Fertility Properties Using Multispectral UAV Images and Machine Learning in Central Peru. AgriEngineering, 7(3), 70. https://doi.org/10.3390/agriengineering7030070