Adaptation of Conventional Wheat Flour Mill to Refine Sorghum, Corn, and Cowpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Milling of Dehulled Sorghum and Degermed Corn
2.3. Milling of Whole Sorghum and Whole Corn
2.4. Milling of Cowpea
2.5. Particle Size Analysis
2.6. Proximate Composition
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sorghum Milling
3.2. Cowpea Milling
3.3. Corn Milling
3.4. Flour Yield and Particle Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delimont, N.M.; Chanadang, S.; Joseph, M.V.; Rockler, B.E.; Guo, Q.; Reiger, G.K.; Mulford, M.r.; Kayanda, R.; Range, M.; Mziray, Z.; et al. The MFFAPP Tanzania Efficacy Study Protocol: Newly Formulated, Extruded, Fortified Blended Foods for Food Aid. Curr. Dev. Nutr. 2017, 1, e000315. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.; Rogers, B.; Rosenberg, I.; Schlossman, N.; Wanke, C.; Bagriansky, J.; Sadler, K.; Johnson, Q.; Tilahun, J.; Reese Masterson, A.; et al. Delivering Improved Nutrition: Recommendations for Changes to U.S. Food Aid Products and Programs; Tufts University: Boston, MA, USA, 2011. [Google Scholar]
- Barrett, C.B.; Maxwell, D.G. Food Aid after Fifty Years: Recasting Its Role, 1st ed.; Routledge: New York, NY, USA, 2005. [Google Scholar]
- Bayram, M. Application of bulgur technology to food aid programs. Cereal Foods World 2007, 52, 249–256. [Google Scholar] [CrossRef]
- USAID. Corn Commodity Fact Sheet; USAID: Washington, DC, USA, 2015.
- De Pee, S.; Bloem, M.W. Current and potential role of specially formulated foods and food supplements for preventing malnutrition among 6-to 23-month-old children and for treating moderate malnutrition among 6-to 59-month-old children. Food Nutr. Bull. 2009, 30, S434–S463. [Google Scholar] [CrossRef] [PubMed]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.; van Berkel, W.J. Sorghum grain as human food in Africa: Relevance of starch content and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395. [Google Scholar]
- Day, L.; Swanson, B.G. Functionality of protein-fortified extrudates. Compr. Rev. Food Sci. Food Saf. 2013, 12, 546–564. [Google Scholar] [CrossRef] [PubMed]
- Gwirtz, J.A.; Garcia-Casal, M.N. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. 2014, 1312, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.; Proudlock, K.; Clay, E.; Riley, B.; Jaspars, S. Food Aid and Food Assistance in Emergency and Transitional Contexts: A Review of Current Thinking; Humanitarian Policy Group Synthesis Paper 2010; ODI Global Advisory Newsletter: London, UK, 2010; Available online: https://media.odi.org/documents/6038.pdf (accessed on 31 January 2024).
- Lambot, C. Industrial potential of cowpea. Challenges and opportunities for enhancing sustainable cowpea production. In Proceedings of the World Cowpea Conference III, Ibadan, Nigeria, 4–8 September 2000; p. 433. [Google Scholar]
- Phillips, R.D.; Mcwatters, K.H. Contribution of cowpeas to nutrition and health. Food Technol. 1991, 45, 127–130. [Google Scholar]
- Rooney, L.W. Wet milling nixtamalization and micronization of sorghum. In Utilization of Sorghum and Millets; Gomez, M.I., Rooney, L.W., Dendy, D.A.V., Eds.; ICRISAT: Patancheru, India, 1992; pp. 19–21. [Google Scholar]
- Robinson, E.; Nwuneli, N.; Henson, S.; Humphrey, J. Mapping Value Chains for Nutrient-Dense Foods in Nigeria; Institute of Development Studies: Brighton, UK, 2014; p. 95. [Google Scholar]
- Abdelrahman, A.A.; Farrell, E.P. Grits from grain sorghum dry milled on roller mills. Cereal Chem. 1981, 58, 521–524. [Google Scholar]
- Brites, C.; Trigo, M.J.; Santos, C.; Collar, C.; Rosell, C.M. Maize-based gluten-free bread: Influence of processing parameters on sensory and instrumental quality. Food Bioprocess Technol. 2010, 3, 707–715. [Google Scholar] [CrossRef]
- Brutsch, L.; Huggler, I.; Kuster, S.; Windhab, E.J. Industrial roller milling process characterization for targeted bread quality optimization. Food Bioprocess Technol. 2017, 10, 710–719. [Google Scholar] [CrossRef]
- Jarrard, M., Jr.; Hung, Y.-C. Milling of cowpea flour using cyclone assisted milling. Appl. Eng. Agric. 2007, 23, 785–792. [Google Scholar] [CrossRef]
- Ngoma, T.N.; Chimimba, U.K.; Mwangwela, A.M.; Thakwalakwa, C.; Maleta, K.M.; Manary, M.; Trehan, I. Effect of cowpea flour processing on the chemical properties and acceptability of a novel cowpea blended maize porridge. PLoS ONE 2018, 13, e0200418. [Google Scholar] [CrossRef] [PubMed]
- Ningsanond, S.; Ooraikul, B. Dry and wet milling of red cowpea. Can. Inst. Food Sci. Technol. J. 1989, 22, 25–33. [Google Scholar] [CrossRef]
- Sakhare, S.D.; Inamdar, A.A. The cumulative ash curve: A best tool to evaluate complete mill performance. J. Food Sci. Technol. 2014, 51, 795–799. [Google Scholar] [CrossRef]
- Singh, N.; Bedi, R.; Garg, R.; Garg, M.; Singh, J. Physico-chemical, thermal and pasting properties of fractions obtained during three successive reduction milling of different corn types. Food Chem. 2009, 113, 71–77. [Google Scholar] [CrossRef]
- Rumler, R.; Bender, D.; Speranza, S.; Frauenlob, J.; Gamper, L.; Hoek, J.; Jager, H.; Schonlechner, R. Chemical and Physical Characterization of Sorghum Milling Fractions and Sorghum Whole Meal Flours Obtained via Stone or Roller Milling. Foods 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Rausch, K.D.; Eckhoff, S.R. Maize: Wet Milling. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C.C.H., Seetharaman, K., Faubion, J., Eds.; Grain-Based Products and Their Processing; Academic Press: Oxford, UK, 2016; pp. 467–481. [Google Scholar]
- Eckhoff, S.R. Maize: Dry Milling. In Encyclopedia of Grain Science; Wigley, C., Corke, H., Walker, C.E., Eds.; Academic Press: Oxford, UK, 2004; pp. 216–225. [Google Scholar]
- AACC. 44-19.01 Moisture—Air-Oven Method, Drying at 135°; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; The Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the AOCS, 7th ed.; AOCS Press: Urbana, IL, USA, 2009. [Google Scholar]
- Bean, S.R.; Wilson, J.D.; Moreau, R.A.; Galant, A.; Awika, J.M.; Kaufman, R.C.; Adrianos, S.L.; Ioerger, B.P. Structure and composition of the sorghum grain. In Sorghum: State of the Art and Future Perspectives; Ciampitti, I., Prasad, V., Eds.; Agronomy Monographs; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2016; p. 516. [Google Scholar]
- Hulse, J.H.; Laing, E.M.; Pearson, O.E. Sorghum and the Millets: Their Composition and Nutritive Value; Academic Press Inc. (London) Ltd.: London, UK, 1980. [Google Scholar]
- Abdelrahim, S.M.K.; Mudawi, H.A. Some sorghum milling techniques versus flour quality. Egypt. Acad. J. Biol. Sci.—Physiol. Mol. Biol. 2014, 6, 115–124. [Google Scholar]
- Winger, M.; Khouryieh, H.; Aramouni, F.; Herald, T. Sorghum flour characterization and evaluation in gluten-free flour tortilla. J. Food Qual. 2014, 37, 95–106. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Penci, M.C.; Calderon-Dominguez, G.; Ribotta, P.D. Chemical composition and physical properties of sorghum flourprepared from different sorghum hybrids grown in Argentina. Starch/Stärke 2016, 68, 1055–1064. [Google Scholar] [CrossRef]
- Gujral, H.S.; Singh, N. Relationship between debranning, ash distribution pattern, and conductivity in maize. Int. J. Food Prop. 2001, 4, 261–269. [Google Scholar] [CrossRef]
- Yanez, G.A.; Walker, C.E. Effect of tempering parameters on extraction and ash of proso millet flours, and partial characterization of proso starch. Cereal Chem. 1986, 63, 164–167. [Google Scholar]
- Langó, B.; Fehér, A.G.; Bicskei, B.Z.; Jaksics, E.; Németh, R.; Bender, D.; D’Amico, S.; Schoenlechner, R.; Tömösközi, S. The effect of different laboratory-scale sample preparation methods on the composition of sorghum (Sorghum bicolor L.) and millet (Panicum miliaceum L.) milling fractions. Period. Polytech. Chem. Eng. 2018, 62, 426–431. [Google Scholar] [CrossRef]
- Phillips, R.D. Preparation and composition of a dry-milled flour from cowpeas. J. Am. Oil Chem. Soc. 1982, 59, 351–353. [Google Scholar] [CrossRef]
- Ward, C.D.W.; Resurreccion, A.V.A.; McWatters, K.H. A systematic approach to prediction of snack chip acceptability utilizing discriminant functions based on instrumental measurements. J. Sens. Stud. 1995, 10, 181–201. [Google Scholar] [CrossRef]
- Reichert, R.D.; Lorer, E.F.; Youngs, C.G. Village-scale mechanical dehulling of cowpeas. Cereal Chem. 1979, 56, 181–184. [Google Scholar]
- Kerr, W.L.; Ward, C.D.W.; Mcwatters, K.H.; Resurreccion, A.V.A. Effect of milling and particle size on functionality and physicochemical properties of cowpea flour. Cereal Chem. 2000, 77, 213–219. [Google Scholar] [CrossRef]
- Shevkani, K.; Kaur, A.; Singh, G.; Singh, B.; Singh, N. Composition, rheological and extrusion behavior of fractions produced by three successive reduction dry milling of corn. Food Bioprocess Technol. 2014, 7, 1414–1423. [Google Scholar] [CrossRef]
- Bookwalter, G.N.; Warner, K.; Brekke, O.L.; Griffin, E.L., Jr. High-lysine corn fractions and their characteristics. J. Food Sci. 1974, 39, 166–170. [Google Scholar] [CrossRef]
- Anderson, R.A. Producing quality sorghum flour on wheat milling equipment. Northwestern Mill. 1969, 276, 10–12. [Google Scholar]
- Alvarenga, I.C.; Ou, Z.; Thiele, S.; Alavi, S.; Aldrich, C.G. Effects of milling sorghum into fractions on yield, nutrient composition, and their performance in extrusion of dog food. J. Cereal Sci. 2018, 82, 121–128. [Google Scholar] [CrossRef]
- Yoganandan, M.; Bean, S.R.; Miller-Regan, R.; Dogan, H.; Pulivarthi, M.R.; Siliveru, K. Effect of Tempering Conditions on White Sorghum Milling, Flour, and Bread Properties. Foods 2021, 10, 1947. [Google Scholar] [CrossRef]
- FAO. Sorghum: Post-Harvest Operations; FAO: Rome, Italy, 1999; pp. 3–32. [Google Scholar]
- Matz, S.A. The Chemistry and Technology of Cereals as Food and Feed, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 1991; p. 751. [Google Scholar]
- Rausch, K.D.; Pruiett, L.E.; Wang, P.; Xu, L.; Belyea, R.L.; Tumbleson, M.E. Laboratory measurement of yield and composition of dry-milled corn fractions using shortened, single stage tempering procedure. Cereal Chem. 2009, 86, 434–438. [Google Scholar] [CrossRef]
- Manay, N.S.; Sadaksharaswamy, N. Foods: Facts and Principles, 2nd ed.; New Age International (P) Limited: New Delhi, India, 2001; p. 564. [Google Scholar]
- Wingfield, J. Dictionary of Milling Terms and Equipment; Association of Operative Millers: Overland Park, KS, USA, 1989; ISBN 0897451287. [Google Scholar]
- USCFR. Code of Federal Regulations Title 21. Part 137 Sec. 137.211, White corn flour. In Subchapter B—Food for Human Consumption; Food and Drug Adminitsration: Silver Spring, MD, USA, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=137.211 (accessed on 31 January 2024).
- USCFR. Code of Federal Regulations Title 21. Part 137 Sec. 137.215, Yellow corn flour. In Subchapter B—Food for Human Consumption; Food and Drug Adminitsration: Silver Spring, MD, USA, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=137.215 (accessed on 31 January 2024).
- USFCR. Code of Federal Regulations Title 21. Part 137 Sec. 137.250, White corn meal. In Subchapter B—Food for Human Consumption; Food and Drug Adminitsration: Silver Spring, MD, USA, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=137.250 (accessed on 31 January 2024).
- USCFR. Code of Federal Regulations Title 21. Part 137 Sec. 137.260, Enriched corn meals. In Subchapter B—Food for Human Consumption; Food and Drug Adminitsration: Silver Spring, MD, USA, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=137.260 (accessed on 31 January 2024).
- USCFR. Code of Federal Regulations Title 21. Part 137 Sec. 137.265, Degerminated white corn meal. In Subchapter B—Food for Human Consumption; Food and Drug Adminitsration: Silver Spring, MD, USA, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=137.265 (accessed on 31 January 2024).
- Barimalaa, I.S.; Okoroji, C.O. Particle size distribution of commercial cowpea (Vigna unguiculata (l) Walp.) flour and sensory properties of Akara. Int. J. Food Eng. 2009, 5, 4. [Google Scholar] [CrossRef]
Product | Milling Streams | Crude Protein (%) | Crude Fiber (%) | Crude Fat (%) | Ash (%) | Starch (%) |
---|---|---|---|---|---|---|
Whole Grain | Before milling | 7.6 ± 0.2 a | 1.9 ± 0.1 aci | 3.2 ± 0.2 a | 0.6 ± 0.0 agj | 61.8 ± 0.6 a |
Dehulled Sorghum (roller milled) | Flour from 2 M | 12.3 ± 0.3 b | 1.3 ± 0.1 ae | 3.9 ± 0.1 d | 1.8 ± 0.1 d | 58.6 ± 0.1 dg |
Hulls from Peeler | 7.8 ± 0.3 a | 2.0 ± 0.2 ci | 4.1 ± 0.0 d | 1.7 ± 0.0 d | 57.0 ± 0.0 d | |
Semolina/Grits | 7.3 ± 0.3 a | 1.0 ± 0.0 degj | 0.5 ± 0.0 c | 0.3 ± 0.0 ch | 70.5 ± 0.3 bc | |
Dehulled fine (−315 µm) | 7.4 ± 0.1 a | 0.4 ± 0.1 b | 1.7 ± 0.0 b | 0.7 ± 0.0 abf | 69.8 ± 0.4 beh | |
Dehulled coarse (+315 µm) | 7.3 ± 0.2 a | 0.4 ± 0.1 bd | 0.5 ± 0.2 c | 0.3 ± 0.0 c | 72.3 ± 0.4 c | |
Whole Sorghum (hammer milled) | Whole fine (−315 µm) | 6.8 ± 0.1 a | 1.6 ± 0.1 acg | 3.0 ± 0.1 a | 1.3 ± 0.0 e | 68.0 ± 0.8 e |
Whole coarse (+315 µm) | 9.3 ± 0.3 c | 3.1 ± 0.1 f | 3.0 ± 0.1 a | 1.3 ± 0.0 e | 57.3 ± 0.6 d |
Product | Milling Streams | Crude Protein (%) | Crude Fiber (%) | Crude Fat (%) | Ash (%) | Starch (%) |
---|---|---|---|---|---|---|
Whole Cowpea | Before milling | 25.0 ± 0.4 a | 2.2 ± 0.2 a | 1.2 ± 0.1 a | 3.1 ± 0.2 a | 36.2 ± 0.1 a |
Dehulled Cowpea (roller milled) | Hulls from peeler | 25.2 ± 0.2 a | 10.0 ± 0.2 b | 1.7 ± 0.0 b | 3.5 ± 0.2 a | 18.9 ± 0.4 b |
Hulls from mill by-products | 21.1 ± 0.2 b | 22.0 ± 0.2 c | 0.7 ± 0.1 c | 5.1 ± 0.3 a | 9.8 ± 0.1 c | |
Peeled cowpea to 1/2 BK | 25.9 ± 0.0 a | 1.6 ± 0.4 a | 1.1 ± 0.1 a | 2.6 ± 0.1 a | 38.0 ± 0.6 d | |
Flour from 1/2 M flour | 26.0 ± 1.0 a | 1.1 ± 0.4 a | 1.3 ± 0.1 a | 2.8 ± 0.0 a | 43.5 ± 0.0 e | |
Ground stock to 1/2 M sifter | 25.7 ± 0.5 a | 1.7 ± 0.2 a | 1.1 ± 0.1 a | 2.7 ± 0.3 a | 42.1 ± 0.1 f | |
Flour from 1/2 BK | 26.1 ± 0.3 a | 1.1 ± 0.1 a | 1.1 ± 0.1 a | 3.1 ± 0.0 a | 40.7 ± 0.0 g |
Product | Milling Streams | Crude Protein (%) | Crude Fiber (%) | Crude Fat (%) | Ash (%) | Starch (%) |
---|---|---|---|---|---|---|
Corn | Raw corn | 7.8 ± 0.03 c | 1.9 ± 0.20 b | 3.3 ± 0.18 c | 1.2 ± 0.07 ac | 60.1 ± 0.28 c |
M-2 Stream clear | 9.5 ± 0.20 ad | 0.5 ± 0.08 a | 2.0 ± 0.19 a | 1.0 ± 0.04 a | 67.5 ± 0.07 a | |
Flour from Patent screw | 6.1 ± 0.20 b | 0.7 ± 0.21 a | 0.6 ± 0.08 b | 0.3 ± 0.03 b | 75.5 ± 1.20 b | |
Coarse meal from purifiers | 7.9 ± 0.05 c | 0.1 ± 0.06 a | 0.4 ± 0.15 b | 0.2 ± 0.04 b | 74.5 ± 0.57 b | |
Degermed fine | 6.0 ± 0.20 b | 0.2 ± 0.03 a | 1.2 ± 0.02 d | 0.3 ± 0.05 b | 74.7 ± 0.93 b | |
Degermed coarse | 7.7 ± 0.06 c | 0.2 ± 0.03 a | 0.6 ± 0.13 b | 0.3 ± 0.02 b | 71.8 ± 0.00 b | |
Whole Corn (+315 µm) | 9.9 ± 0.04 a | 3.4 ± 0.36 c | 2.5 ± 0.09 a | 1.3 ± 0.10 c | 54.6 ± 1.77 d | |
Whole Corn (−315 µm) | 9.1 ± 0.08 d | 2.0 ± 0.15 b | 3.1 ± 0.02 c | 1.4 ± 0.11 cd | 63.2 ± 0.07 c |
Flours | Yield (%) | Average Particle Size (µm) |
---|---|---|
Decorticated sorghum—fine | 68.40 | 202.93 ± 2.17 |
Decorticated sorghum—coarse | 68.40 | 518.43 ± 0.67 |
Whole sorghum—fine | 88.00 | 407.33 ± 9.57 |
Whole sorghum—coarse | 88.00 | 459.07 ± 4.29 |
Degermed corn—fine | 67.00 | 93.79 ± 0.74 |
Degermed corn—coarse | 66.66 | 491.09 ± 2.13 |
Whole corn—fine | 86.95 | 197.56 ± 0.34 |
Whole corn—coarse | 86.95 | 439.10 ± 0.95 |
Cowpea | 86.00 | 124.57 ± 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, M.; Alavi, S.; Adedeji, A.A.; Zhu, L.; Gwirtz, J.; Thiele, S. Adaptation of Conventional Wheat Flour Mill to Refine Sorghum, Corn, and Cowpea. AgriEngineering 2024, 6, 1959-1971. https://doi.org/10.3390/agriengineering6030114
Joseph M, Alavi S, Adedeji AA, Zhu L, Gwirtz J, Thiele S. Adaptation of Conventional Wheat Flour Mill to Refine Sorghum, Corn, and Cowpea. AgriEngineering. 2024; 6(3):1959-1971. https://doi.org/10.3390/agriengineering6030114
Chicago/Turabian StyleJoseph, Michael, Sajid Alavi, Akinbode A. Adedeji, Lijia Zhu, Jeff Gwirtz, and Shawn Thiele. 2024. "Adaptation of Conventional Wheat Flour Mill to Refine Sorghum, Corn, and Cowpea" AgriEngineering 6, no. 3: 1959-1971. https://doi.org/10.3390/agriengineering6030114
APA StyleJoseph, M., Alavi, S., Adedeji, A. A., Zhu, L., Gwirtz, J., & Thiele, S. (2024). Adaptation of Conventional Wheat Flour Mill to Refine Sorghum, Corn, and Cowpea. AgriEngineering, 6(3), 1959-1971. https://doi.org/10.3390/agriengineering6030114