Carbon and Nitrogen Stocks in Topsoil under Different Land Use/Land Cover Types in the Southeast of Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Statistical Analysis
3. Results
3.1. Soil Basic Properties
3.2. SOC and SN Stocks across Land Use Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef]
- Veni, V.G.; Srinivasarao, C.; Reddy, K.S.; Sharma, K.L.; Rai, A. Soil health and climate change. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 751–767. [Google Scholar]
- Mao, X.; Zheng, J.; Yu, W.; Guo, X.; Xu, K.; Zhao, R.; Xiao, L.; Wang, M.; Jiang, Y.; Zhang, S.; et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biol. Biochem. 2022, 172, 108743. [Google Scholar] [CrossRef]
- Bradford, M.A.; Weider, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; De Goede, R. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Kooch, Y.; Ehsani, S.; Akbarinia, M. Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil Tillage Res 2020, 200, 104621. [Google Scholar] [CrossRef]
- Gualberto, A.V.S.; de Souza, H.A.; Sagrilo, E.; Araujo, A.S.F.; Mendes, L.W.; de Medeiros, E.V.; Pereira, A.P.D.; Costa, D.P.; Vogado, R.F.; Cunha, J.R.; et al. Organic C Fractions in Topsoil under Different Management Systems in Northeastern Brazil. Soil Syst. 2023, 7, 11. [Google Scholar] [CrossRef]
- Pires, D.; Orlando, V.; Collett, R.L.; Moreira, D.; Costa, S.R.; Inácio, M.L. Linking nematode communities and soil health under climate change. Sustainability 2023, 15, 11747. [Google Scholar] [CrossRef]
- McGuire, A.D.; Anderson, L.G.; Christensen, T.R.; Dallimore, S.; Guo, L.; Hayes, D.J.; Heimann, M.; Lorenson, T.D.; Macdonald, R.W.; Roulet, N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009, 79, 523–555. [Google Scholar] [CrossRef]
- Ren, W.; Banger, K.; Tao, B.; Yang, J.; Huang, Y.; Tian, H. Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management. Geogr. Sustain. 2020, 1, 59–69. [Google Scholar] [CrossRef]
- Ren, W. Towards an Integrated Agroecosystem Modeling Approach for Climate-Smart Agriculture Management. In Bridging among Disciplines by Synthesizing Soil and Plant Processes; ASA, CSSA, SSSA: Madison, WI, USA, 2019; Volume 8, pp. 127–144. [Google Scholar]
- Fiorini, A.; Boselli, R.; Maris, S.C.; Santelli, S.; Ardenti, F.; Capra, F.; Tabaglio, V. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agriculture. Ecosyst. Environ. 2020, 296, 106926. [Google Scholar] [CrossRef]
- Deng, L.; Wang, G.L.; Liu, G.B.; Shangguan, Z.P. Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China. Ecol. Eng. 2016, 90, 105–112. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, X.; Zhang, C.; Li, J. Impact of rapid and intensive land use/land cover change on soil properties in arid regions: A case study of Lanzhou new area, China. Sustainability 2020, 12, 9226. [Google Scholar] [CrossRef]
- Johansson, E.; Muneer, F.; Prade, T. Plant Breeding to Mitigate Climate Change—Present Status and Opportunities with an Assessment of Winter Wheat Cultivation in Northern Europe as an Example. Sustainability 2023, 15, 12349. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Z.; Ji, B.; Wang, J.; Xu, C.; Xie, B. Measurement and Spatial Econometric Analysis of Forest Carbon Sequestration Efficiency in Zhejiang Province, China. Forests 2022, 13, 1583. [Google Scholar] [CrossRef]
- Zhang, Z.; He, J.; Huang, M.; Zhou, W. Is Regulation Protection? Forest Logging Quota Impact on Forest Carbon Sinks in China. Sustainability 2023, 15, 13740. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y.; Zhou, C.; Wu, Z.; Zheng, L.; Hu, X.; Chen, H.; Gan, J. Effects of cutting intensity on soil physical and chemical properties in a mixed natural forest in southeastern China. Forests 2015, 6, 4495–4509. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Shekhovtseva, O.G.; Mal’tseva, I.A. Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Sci. 2015, 48, 1393–1400. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. Total carbon and nitrogen stocks under different land use/land cover types in the Southwestern region of Nigeria. Geoderma Reg. 2020, 22, e00320. [Google Scholar] [CrossRef]
- Hillel, D.; Hatfield, J.H.; Powlson, D.S.; Rosenzweig, C.; Scow, K.M.; Singer, M.J.; Sparks, D.L. Encyclopedia of Soils in the Environment; Elsevier/Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Liu, X.; Li, T.; Zhang, S.; Jia, Y.; Li, Y.; Xu, X. The role of land use, construction and road on terrestrial carbon stocks in a newly urbanized area of western Chengdu, China. Landsc. Urban Plan. 2016, 147, 88–95. [Google Scholar] [CrossRef]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Trammell, T.L. Climate change and urban forest soils. Dev. Soil Sci. 2019, 36, 189–211. [Google Scholar]
- Dikgwatlhe, S.B.; Chen, Z.D.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Mahdi, S.S.; Choudhury, S.R.; Gupta, S.K.; Jan, R.; Bangroo, S.A.; Bhat, M.A.; Wani, O.A.; Bahar, F.A.; Dhekale, B.; Dar, S.A. Impact of Climate Change on Soil Carbon-Improving Farming Practices Reduces the Carbon Footprint. In Innovative Approaches for Sustainable Development: Theories and Practices in Agriculture; Springer: Cham, Switzerland, 2022; pp. 299–310. [Google Scholar]
- Gao, M.; Zhu, F.; Hobbie, E.A.; Zhu, W.; Li, S.; Gurmesa, G.A.; Wang, A.; Fang, X.; Zhu, J.; Gundersen, P.; et al. Effects of nitrogen deposition on carbon allocation between wood and leaves in temperate forests. Plants People Planet 2023, 5, 267–280. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Hu, A.; Niu, B.; Yang, X.; Jiao, H.; Ri, X.; Song, L.; Zhang, G. Shifts in the dynamic mechanisms of soil organic matter transformation with nitrogen addition: From a soil carbon/nitrogen-driven mechanism to a microbe-driven mechanism. Soil Biol. Biochem. 2021, 160, 108355. [Google Scholar] [CrossRef]
- Tang, B.; Rocci, K.S.; Lehmann, A.; Rillig, M.C. Nitrogen increases soil organic carbon accrual and alters its functionality. Glob. Chang. Biol. 2023, 29, 1971–1983. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Zhang, Y.; Morrissey, E.; Liu, Y.; Sun, L.; Qu, L.; Sang, C.; Zhang, H.; Li, G.; et al. Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. ISME Commun. 2023, 3, 86. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhong, Y.; Yang, J.; Wu, Y.; Li, H.; Zheng, L. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci. Total Environ. 2019, 670, 210–217. [Google Scholar] [CrossRef]
- Keller, A.B.; Borer, E.T.; Collins, S.L.; DeLancey, L.C.; Fay, P.A.; Hofmockel, K.S.; Leakey, A.D.B.; Mayes, M.A.; Seabloom, E.W.; Walter, C.A.; et al. Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade-long fertilization. Glob. Chang. Biol. 2022, 28, 1659–1677. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, W.; Zheng, C.; Zhu, B. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biol. Biochem. 2020, 142, 107708. [Google Scholar] [CrossRef]
- Sun, T.; Mao, X.; Han, K.; Wang, X.; Cheng, Q.; Liu, X.; Zhou, J.; Ma, Q.; Ni, Z.; Wu, L. Nitrogen addition increased soil particulate organic carbon via plant carbon input whereas reduced mineral− associated organic carbon through attenuating mineral protection in agroecosystem. Sci. Total Environ. 2023, 899, 165705. [Google Scholar] [CrossRef] [PubMed]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef] [PubMed]
- Puget, P.; Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration-what do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Chazarra Bernabé, A.; Flórez García, E.; Peraza Sánchez, B.; Tohá Rebull, T.; Lorenzo Mariño, B.; Criado Pinto, E.; Moreno García, J.V.; Romero Fresneda, R.; Botey Fullat, R. Mapas Climáticos de España (1981–2010) y ETo (1996–2016). Available online: https://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/MapasclimaticosdeEspana19812010 (accessed on 31 January 2024).
- Melendez-Pastor, I.; Hernández, E.I.; Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez Lucas, I.; Jordán Vidal, M.M. Occurrence of pesticides associated with an agricultural drainage system in a mediterranean environment. Appl. Sci. 2021, 11, 10212. [Google Scholar] [CrossRef]
- Brevik, E.C. An introduction to soil science basics. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 3–28. [Google Scholar]
- Coughenour, M.B.; Chen, D.X. Assessment of grassland ecosystem responses to atmospheric change using linked plant–soil process models. Ecol. Appl. 1997, 7, 802–827. [Google Scholar]
- Hättenschwiler, S.; Handa, I.T.; Egli, L.; Asshoff, R.; Ammann, W.; Körner, C. Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol. 2002, 156, 363–375. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Niñerola, V.B.; Navarro-Pedreño, J.; Lucas, I.G.; Pastor, I.M.; Vidal, M.M.J. Geostatistical assessment of soil salinity and cropping systems used as soil phytoremediation strategy. J. Geochem. Explor. 2017, 174, 53–58. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The increase of soil organic matter reduces global warming, myth or reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis; Part 4. Physical Methods; Campbell, G., Horton, R., Jury, W.A., Nielsen, D.R., van Es, H.M., Wierenga, P.J., Dane, J.H., Topp, G.C., Eds.; SSSA, ASA: Madison, WI, USA, 2002; pp. 255–294. [Google Scholar]
- U.S. Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; Handbook No. 60; United States Department of Agriculture: Washington, DC, USA, 1954; 160p.
- Perry, R.S.; Adams, J.B. Desert varnish: Evidence for cyclic deposition of manganese. Nature 1978, 276, 489–491. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, 2nd ed.; Part 1, Physical and Mineralogical Methods; Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Gustafsson, Ö.; Haghseta, F.; Chan, C.; MacFarlane, J.; Gschwend, P.M. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ. Sci. Technol. 1996, 31, 203–209. [Google Scholar] [CrossRef]
- Poot, A.; Quik, J.T.; Veld, H.; Koelmans, A.A. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods. J. Chromatogr. A 2009, 1216, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Kondratenok, B.M.; Tumanova, E.A.; Vanchikova, E.V.; Lapteva, E.M.; Zonova, T.V.; Lu-Lyan-Min, E.I.; Davydova, A.P.; Libohova, Z.; Suvannang, N. Transferability between soil organic matter measurement methods for database harmonization. Geoderma 2022, 412, 115547. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis; Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; SSSA, ASA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Guan, F.; Tang, X.; Fan, S.; Zhao, J.; Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. Catena 2015, 133, 455–460. [Google Scholar] [CrossRef]
- Pearson, T.R. Measurement Guidelines for the Sequestration of Forest Carbon (Vol. 18); US Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2007.
- Schillaci, C.; Acutis, M.; Lombardo, L.; Lipani, A.; Fantappie, M.; Märker, M.; Saia, S. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total Environ. 2017, 601, 821–832. [Google Scholar] [CrossRef]
- Benslama, A.; Khanchoul, K.; Benbrahim, F.; Boubehziz, S.; Chikhi, F.; Navarro-Pedreño, J. Monitoring the variations of soil salinity in a palm grove in Southern Algeria. Sustainability 2020, 12, 6117. [Google Scholar] [CrossRef]
- Tedone, L.; Alhajj Ali, S.; De Mastro, G. The Effect of Tillage on Faba Bean (Vicia faba L.) Nitrogen Fixation in Durum Wheat ((Triticum turgidum L. subsp. Durum (Desf))-Based Rotation under a Mediterranean Climate. Agronomy 2022, 13, 105. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Chen, X.; He, X.; Zhao, K. Stratification of soil organic C, N and C: N ratio as affected by conservation tillage in two maize fields of China. Catena 2012, 95, 124–130. [Google Scholar] [CrossRef]
- Chen, B.; Coops, N.C. Understanding of coupled terrestrial carbon, nitrogen and water dynamics—An overview. Sensors 2009, 9, 8624–8657. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Xia, Y.; Li, B.; Wang, J.; Wang, S.; Zhou, W.; Yan, X. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agric. Ecosyst. Environ. 2016, 231, 24–33. [Google Scholar] [CrossRef]
- Ngo, K.M.; Turner, B.L.; Muller-Landau, H.C.; Davies, S.J.; Larjavaara, M.; bin Nik Hassan, N.F.; Lum, S. Carbon stocks in primary and secondary tropical forests in Singapore. For. Ecol. Manag. 2013, 296, 81–89. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and Land Use Change: A Meta Analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.A.S.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Lu, X.; Hou, E.; Guo, J.; Gilliam, F.S.; Li, J.; Tang, S.; Kuang, Y. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Glob. Chang. Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Mishra, U.; Ussiri, D.A.N.; Lal, R. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil Tillage Res. 2010, 107, 88–96. [Google Scholar] [CrossRef]
- Dong, W.; Hu, C.; Chen, S.; Zhang, Y. Tillage and residue management effects on soil carbon and CO2 in a wheat–corn double-cropping system. Nutr. Cycl. Agroecosyst. 2008, 83, 27–37. [Google Scholar] [CrossRef]
- Tedone, L.; Verdini, L.; De Mastro, G. Effects of Different Types of Soil Management on Organic Carbon and Nitrogen Contents and the Stability Index of a Durum Wheat–Faba Bean Rotation under a Mediterranean Climate. Agronomy 2023, 13, 1298. [Google Scholar] [CrossRef]
- Ljubičić, N.; Popović, V.; Ćirić, V.; Kostić, M.; Ivošević, B.; Popović, D.; Pandžić, M.; El Musafah, S.; Janković, S. Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants 2021, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Kostić, M.; Ljubičić, N.; Ivošević, B.; Popović, S.; Radulović, M.; Blagojević, D.; Popović, V. Spot-based proximal sensing for field-scale assessment of winter wheat yield and economical production. Agric. For. 2021, 67, 103–113. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Chang. Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Bárcena, T.G.; Kiær, L.P.; Vesterdal, L. Soil carbon stock change following afforestation in northern Europe: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2393–2405. [Google Scholar] [CrossRef]
- Birch, H.F.; Friend, M.T. The organic-matter and nitrogen status of East African soils. J. Soil Sci. 1956, 7, 156–168. [Google Scholar] [CrossRef]
- Ali, S.A.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat response to no-tillage and nitrogen fertilization in a long-term faba bean-based rotation. Agronomy 2019, 9, 50. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J. Vertical distribution of soil organic carbon and nitrogen under warmseason native grasses relative to croplands in westcentral Indiana, USA. Agric. Ecosyst. Environ. 2006, 117, 159–170. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, C.; Han, S.; Li, X.; Kan, Z.; Zhao, X.; Zhang, H. Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheatmaize cropping system. Sci. Total Environ. 2021, 798, 149220. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Wang, T.; Kang, F.; Cheng, X.; Han, H.; Ji, W. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 2016, 163, 176–184. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.; Wang, S.; Brandle, J.; Lian, J.; Luo, Y.; Zhang, F. Soil organic carbon and total nitrogen storage under fifferent land uses in the Naiman Banner, a semiarid degraded region of northern China. Can. J. Soil Sci. 2014, 94, 9–20. [Google Scholar] [CrossRef]
- Byrne, L.B. Habitat structure: A fundamental concept and framework for urban soil ecology. Urban Ecosyst. 2007, 10, 255–274. [Google Scholar] [CrossRef]
- Grimm, N.B.; Grove, J.G.; Pickett, S.T.; Redman, C.L. Integrated approaches to long-term studies of urban ecological systems: Urban ecological systems present multiple challenges to ecologists—Pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. BioScience 2000, 50, 571–584. [Google Scholar]
- Vasenev, V.I.; Stoorvogel, J.J.; Vasenev, I.I. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena 2013, 107, 96–102. [Google Scholar] [CrossRef]
- Martín, J.R.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.J.; Corbí, J.G.; Boluda, R. Assessment of the soil organic carbon stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef]
- Ganuza, A.; Almendros, G. Organic carbon storage in soils of the Basque Country (Spain): The effect of climate, vegetation type and edaphic variables. Biol. Fertil. Soils 2003, 37, 154–162. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Galicia, L. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry 2010, 83, 497–506. [Google Scholar] [CrossRef]
Land Use Type | Clay (%) | Loam (%) | Sand (%) | SM (%) | BD (Mg/m3) | pH | EC (dS/m) | CaCO3 (%) | SOMLOI (g/kg) | OCWB (g/kg) | SOMWB (g/kg) | SN (g/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cropland | Min | 5.7 | 56.1 | 11.7 | 3.1 | 1.06 | 7.50 | 0.19 | 8.77 | 36.9 | 7.3 | 12.6 | 0.86 |
Max | 12.2 | 82.5 | 35 | 28 | 1.31 | 8.30 | 9.26 | 11.70 | 73.9 | 31.1 | 53.6 | 3.06 | |
Mean | 7 | 74.1 | 18.9 | 7.6 | 1.20 | 7.90 | 2.04 | 10.04 | 53.3 | 18.4 | 31.7 | 1.79 | |
SD | 1.6 | 7.7 | 6.6 | 5.6 | 0.07 | 0.26 | 2.09 | 0.64 | 10.4 | 5.9 | 10.1 | 0.68 | |
CI | 0.7 | 3.2 | 2.7 | 2.3 | 0.03 | 0.11 | 0.86 | 0.27 | 0.43 | 0.24 | 0.4 | 0.03 | |
F test | a | a | a | a | a | a | a | a | a | a | a | a | |
Grassland | Min | 5.7 | 30.9 | 21.3 | 7.0 | 1.03 | 7.10 | 0.17 | 8.22 | 24.5 | 5.5 | 09.4 | 0.34 |
Max | 16.4 | 72.3 | 63.3 | 39.4 | 1.50 | 8.20 | 0.45 | 10.54 | 72.8 | 25.2 | 43.4 | 2.42 | |
Mean | 8.8 | 50.3 | 40.1 | 13.8 | 1.28 | 8.00 | 0.30 | 9.50 | 39.8 | 13.2 | 22.7 | 1.23 | |
SD | 4.2 | 13.1 | 14.6 | 0.7 | 0.13 | 0.13 | 0.10 | 0.70 | 13.2 | 0.6 | 10.9 | 0.56 | |
CI | 2.1 | 6.5 | 7.3 | 4.7 | 0.07 | 0.07 | 0.05 | 0.35 | 0.66 | 0.3 | 0.5 | 0.05 | |
F test | b | b | b | b | b | b | b | a | a | a | a | a | |
Urban Soil | Min | 5.74 | 38.2 | 25.8 | 2.9 | 1.27 | 8.08 | 0.13 | 4.13 | 21.0 | 2.7 | 4.6 | 0.20 |
Max | 7 | 68.1 | 55.6 | 12.3 | 1.60 | 8.90 | 2.41 | 19.14 | 42.8 | 11.5 | 19.8 | 1.33 | |
Mean | 6.2 | 54.5 | 39.3 | 5.6 | 1.42 | 8.58 | 0.83 | 12.95 | 29.5 | 7.4 | 12.7 | 0.51 | |
SD | 0.39 | 9.4 | 9.19 | 2.3 | 0.07 | 0.28 | 0.75 | 4.68 | 7.0 | 2.5 | 4.3 | 0.36 | |
CI | 0.2 | 4.7 | 4.6 | 1.1 | 0.04 | 0.14 | 0.37 | 2.33 | 0.34 | 0.1 | 0.2 | 0.02 | |
F test | c | b | b | c | b | ac | c | b | b | b | b | b |
Land Use | C/N | SOMLOI Stock | SOMWB Stock | SOC Stock | SN Stock |
---|---|---|---|---|---|
t ha−1 | t ha−1 | t ha−1 | t ha−1 | ||
Cropland | 10.27 | 31.980 | 19.020 | 11.040 | 1.074 |
Grassland | 10.73 | 25.472 | 14.528 | 8.448 | 0.787 |
Urban soil | 14.51 | 20.945 | 9.017 | 5.254 | 0.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benslama, A.; Lucas, I.G.; Jordan Vidal, M.M.; Almendro-Candel, M.B.; Navarro-Pedreño, J. Carbon and Nitrogen Stocks in Topsoil under Different Land Use/Land Cover Types in the Southeast of Spain. AgriEngineering 2024, 6, 396-408. https://doi.org/10.3390/agriengineering6010024
Benslama A, Lucas IG, Jordan Vidal MM, Almendro-Candel MB, Navarro-Pedreño J. Carbon and Nitrogen Stocks in Topsoil under Different Land Use/Land Cover Types in the Southeast of Spain. AgriEngineering. 2024; 6(1):396-408. https://doi.org/10.3390/agriengineering6010024
Chicago/Turabian StyleBenslama, Abderraouf, Ignacio Gómez Lucas, Manuel M. Jordan Vidal, María Belén Almendro-Candel, and Jose Navarro-Pedreño. 2024. "Carbon and Nitrogen Stocks in Topsoil under Different Land Use/Land Cover Types in the Southeast of Spain" AgriEngineering 6, no. 1: 396-408. https://doi.org/10.3390/agriengineering6010024
APA StyleBenslama, A., Lucas, I. G., Jordan Vidal, M. M., Almendro-Candel, M. B., & Navarro-Pedreño, J. (2024). Carbon and Nitrogen Stocks in Topsoil under Different Land Use/Land Cover Types in the Southeast of Spain. AgriEngineering, 6(1), 396-408. https://doi.org/10.3390/agriengineering6010024