Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel
Abstract
:1. Introduction
- To set up an experimental system that allows for an assessment of the ability of hedges to reduce atmospheric particulate matter;
- To evaluate the relationship between hedge density and dust reduction ability;
- To quantify the air concentration of PM at different distances from green barriers;
- To provide useful elements to design hedges for urban areas.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-Habitat. World Cities Report 2020: The Value of Sustainable Urbanization; UN-Habitat: Nairobi, Kenya, 2020; 418p. [Google Scholar]
- Worldometer. 2020, Italy Population. Available online: https://www.worldometers.info/world-population/italy-population/ (accessed on 10 December 2023).
- Litschke, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation—A review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Donaldson, K.; Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 2012, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hao, M.; Phalen, R.F.; Hinds, W.C.; Nel, A.E. Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 2003, 109, 250–265. [Google Scholar] [CrossRef] [PubMed]
- EEA, European Environment Agency. Health Impacts of Air Pollution in Europe, 2022. Web Report. Available online: www.eea.europa.eu/publications/air-quality-in-europe-2022/health-impacts-of-air-pollution (accessed on 27 February 2023).
- Im, U.; Bauer, S.E.; Frohn, L.M.; Geels, C.; Tsigaridis, K.; Brandt, J. Present-day and future PM2.5 and O3-related global and regional premature mortality in the EVAv6.0 health impact assessment model. Environ. Res. 2023, 216 Pt 4, 114702. [Google Scholar] [CrossRef] [PubMed]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Viecco, M.; Jorquera, H.; Sharma, A.; Bustamante, W.; Fernando, H.J.S.; Vera, S. Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter. Build. Environ. 2021, 204, 108120. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Attenborough, K.; Maennel, M.; Defrance, J.; Horoshenkov, K.; Kang, J.; Bashir, I.; Taherzadeh, S.; Altreuther, B.; Khan, A.; et al. Measured light vehicle noise reduction by hedges. Appl. Acoust. 2014, 78, 19–27. [Google Scholar] [CrossRef]
- Biocca, M.; Gallo, P.; Di Loreto, G.; Imperi, G.; Pochi, D.; Fornaciari, L. Noise attenuation provided by hedges. J. Agric. Eng. 2019, 889, 113–119. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban Forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Gajewski, T.; Peksa, P.; Studziński, R.; Malendowski, M.; Sumelka, W.; Sielicki, W.P. Application verification of blast mitigation through the use of thuja hedges. Int. J. Prot. Struct. 2022, 13, 363–378. [Google Scholar] [CrossRef]
- FAO. Guidelines on Urban and Peri-Urban Forestry; Salbitano, F., Borelli, S., Conigliaro, M., Chen, Y., Eds.; FAO Forestry Paper No. 178.; Rome, Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Wania, A.; Bruse, M.; Blond, N.; Weber, C. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J. Environ. Manag. 2012, 94, 91–101. [Google Scholar] [CrossRef]
- Shen, J.; Gao, Z.; Ding, W.; Yu, Y. An investigation on the effect of street morphology to ambient air quality using six real-world cases. Atmos. Environ. 2017, 164, 85–101. [Google Scholar] [CrossRef]
- Chen, X.; Pei, T.; Zhou, Z.; Teng, M.; He, L.; Luo, M.; Liu, X. Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): A street scale investigation in Wuhan, China. Urban For. Urban Green. 2015, 14, 354–360. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Mori, J.; Sæbø, A.; Hanslin, H.M.; Teani, A.; Ferrini, F.; Fini, A.; Burchi, G. Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban For. Urban Green. 2015, 14, 264–273. [Google Scholar] [CrossRef]
- Vigevani, I.; Corsini, D.; Mori, J.; Pasquinelli, A.; Gibin, M.; Comin, S.; Szwałko, P.; Cagnolati, E.; Ferrini, F.; Fini, A. Particulate Pollution Capture by Seventeen Woody Species Growing in Parks or along Roads in Two European Cities. Sustainability 2022, 14, 1113. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, B.; Zhao, D.; Li, J.; Tong, J.; Chang, Z.; Liu, X. Evaluation of conifer and broad-leaved barriers in intercepting particulate matters in a wind tunnel. J. Air Waste Manag. Assoc. 2020, 70, 1314–1323. [Google Scholar] [CrossRef]
- Chiam, Z.; Song, X.P.; Lai, H.R.; Tan, H.T.W. Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Sci. Total Environ. 2019, 688, 398–408. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Khlystov, A. Investigation of Ultrafine Particle Deposition to Vegetation Branches in a Wind Tunnel. Aerosol Sci. Technol. 2012, 46, 465–472. [Google Scholar] [CrossRef]
- Xie, C.; Kan, L.; Guo, J.; Jin, S.; Li, Z.; Chen, D.; Li, X.; Che, S. A dynamic processes study of PM retention by trees under different wind conditions. Environ. Pollut. 2018, 233, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Green. 2021, 59, 127014. [Google Scholar] [CrossRef]
- Varshney, C.K.; Mitra, I. Importance of hedges in improving urban air quality. Landsc. Urban Plan. 1993, 25, 75–83. [Google Scholar] [CrossRef]
- Ghafari, S.; Kaviani, B.; Sedaghathoor, S.; Allahyari, M.S. Ecological potentials of trees, shrubs and hedge species for urban green spaces by multi criteria decision making. Urban For. Urban Green. 2020, 55, 126824. [Google Scholar] [CrossRef]
- Biocca, M.; Conte, E.; Pulcini, P.; Marinelli, E.; Pochi, D. Sowing simulation tests of a pneumatic drill equipped with systems aimed at reducing the emission of abrasion dust from maize dressed seed. J. Environ. Sci. Health Part B 2011, 46, 438–448. [Google Scholar]
- Biocca, M.; Fanigliulo, R.; Gallo, P.; Pulcini, P.; Pochi, D. The assessment of dust drift from pneumatic drills using static tests and in-field validation. Crop Prot. 2015, 71, 109–115. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org (accessed on 12 October 2023).
- Raupach, M.R.; Woods, N.; Dorr, G.; Leys, J.F.; Cleugh, H.A. The entrapment of particles by windbreaks. Atmos. Environ. 2001, 35, 3373–3383. [Google Scholar] [CrossRef]
- Tiwary, A.; Morvan, H.P.; Colls, J.J. Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols. J. Aerosol Sci. 2006, 37, 990–1015. [Google Scholar] [CrossRef]
Fraction Size | Distance of the Fan from the Gas Exit | |||||
---|---|---|---|---|---|---|
4.5 m | 2.7 | |||||
TSP | 0.83 | ± | 0.06 | 0.64 | ± | 0.02 |
PM4 | 4.73 | ± | 0.08 | - | - |
Distance of Sampling Points from the Fan (Distance of Sampling Points from the Plants) | |||||
---|---|---|---|---|---|
Row of Plants | 7 (1) m | 10 (4) m | 15 (9) m | 20 (14) m | Average |
1 | −9% | −30% | 27% | 39% | 7% |
2 | 13% | −3% | 78% | 6% | 24% |
3 | 49% | 61% | 3% | 41% | 38% |
Distance of Sampling Points from the Fan (Distance of Sampling Points from the Plants) | |||||
---|---|---|---|---|---|
Row of Plants | 7 (1) m | 10 (4) m | 15 (9) m | 20 (14) m | Average |
1 | 21% | 53% | 52% | 32% | 39% |
2 | −16% | 82% | 60% | 22% | 37% |
3 | 54% | 15% | 44% | 52% | 41% |
Distance of Sampling Points from the Fan (Distance of Sampling Points from the Plants) | |||||
---|---|---|---|---|---|
Row of Plants | 7 (1) m | 10 (4) m | 15 (9) m | 20 (14) m | Average |
1 | −65% | 48% | 46% | 52% | 20% |
2 | 0% | 26% | 23% | 39% | 22% |
3 | −31% | 74% | 32% | −84% | −2% |
Test | Factors | Degrees of Freedom | Probality (p-Values) | Significance (1) |
---|---|---|---|---|
PM4 | Hedge rows | 3 | <0.001 | *** |
Distance | 3 | <0.001 | *** | |
Hedge rows × Distance | 9 | <0.001 | *** | |
TSP with fan at 4.5 m | Hedge rows | 3 | <0.001 | *** |
Distance | 3 | <0.001 | *** | |
Hedge rows × Distance | 9 | <0.001 | *** | |
TSP with fan at 2.7 m | Hedge rows | 3 | <0.001 | *** |
Distance | 3 | <0.001 | *** | |
Hedge rows × Distance | 9 | <0.001 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biocca, M.; Pochi, D.; Imperi, G.; Gallo, P. Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel. AgriEngineering 2024, 6, 228-239. https://doi.org/10.3390/agriengineering6010014
Biocca M, Pochi D, Imperi G, Gallo P. Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel. AgriEngineering. 2024; 6(1):228-239. https://doi.org/10.3390/agriengineering6010014
Chicago/Turabian StyleBiocca, Marcello, Daniele Pochi, Giancarlo Imperi, and Pietro Gallo. 2024. "Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel" AgriEngineering 6, no. 1: 228-239. https://doi.org/10.3390/agriengineering6010014
APA StyleBiocca, M., Pochi, D., Imperi, G., & Gallo, P. (2024). Reduction in Atmospheric Particulate Matter by Green Hedges in a Wind Tunnel. AgriEngineering, 6(1), 228-239. https://doi.org/10.3390/agriengineering6010014