Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Agronomic Data
2.2.2. Remote Sensing Data
2.2.3. Vegetation Indices Computation
2.3. Dataset Creation
2.4. Application of Machine Learning Regression Models
2.4.1. Feature Selection Process
2.4.2. Machine Learning Regression Model Selection
2.4.3. Hyperparameter Tuning
2.5. Model Evaluation
3. Results
3.1. Comparative Analysis of Regression Models for Almond Yield Prediction
3.2. Selected Features and Their Contribution to Almond Yield Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franklin, L.M.; Mitchell, A.E. Review of the Sensory and Chemical Characteristics of Almond (Prunus dulcis) Flavor. J. Agric. Food Chem. 2019, 67, 2743–2753. [Google Scholar] [CrossRef] [PubMed]
- Chavas, J.-P.; Rivieccio, G.; Di Falco, S.; De Luca, G.; Capitanio, F. Agricultural Diversification, Productivity, and Food Security across Time and Space. Agric. Econ. 2022, 53, 41–58. [Google Scholar] [CrossRef]
- Yada, S.; Lapsley, K.; Huang, G. A Review of Composition Studies of Cultivated Almonds: Macronutrients and Micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT—Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 November 2023).
- IPCC Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4.
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Fraga, H. Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees (Prunus dulcis). Agriculture 2023, 13, 1423. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief History of Agricultural Systems Modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef]
- Sloat, L.L.; Lin, M.; Butler, E.E.; Johnson, D.; Holbrook, N.M.; Huybers, P.J.; Lee, J.-E.; Mueller, N.D. Evaluating the Benefits of Chlorophyll Fluorescence for In-Season Crop Productivity Forecasting. Remote Sens. Environ. 2021, 260, 112478. [Google Scholar] [CrossRef]
- Cedric, L.S.; Adoni, W.Y.H.; Aworka, R.; Zoueu, J.T.; Mutombo, F.K.; Krichen, M.; Kimpolo, C.L.M. Crops Yield Prediction Based on Machine Learning Models: Case of West African Countries. Smart Agric. Technol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Burdett, H.; Wellen, C. Statistical and Machine Learning Methods for Crop Yield Prediction in the Context of Precision Agriculture. Precis. Agric. 2022, 23, 1553–1574. [Google Scholar] [CrossRef]
- Iniyan, S.; Akhil Varma, V.; Teja Naidu, C. Crop Yield Prediction Using Machine Learning Techniques. Adv. Eng. Softw. 2023, 175, 103326. [Google Scholar] [CrossRef]
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, Á.; Heredia, I.; Malík, P.; Hluchý, L. Machine Learning and Deep Learning Frameworks and Libraries for Large-Scale Data Mining: A Survey. Artif. Intell. Rev. 2019, 52, 77–124. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ali, A.M.; Abouelghar, M.; Belal, A.A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.S.; Elwesemy, A.; Kucher, D.E.; Maginan, S.; et al. Crop Yield Prediction Using Multi Sensors Remote Sensing (Review Article). Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Escolà, A.; Badia, N.; Arnó, J.; Martínez-Casasnovas, J.A. Using Sentinel-2 Images to Implement Precision Agriculture Techniques in Large Arable Fields: First Results of a Case Study. Adv. Anim. Biosci. 2017, 8, 377–382. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Y.; Chen, B.; Brown, P. California Almond Yield Prediction at the Orchard Level with a Machine Learning Approach. Front. Plant Sci. 2019, 10, 809. [Google Scholar] [CrossRef]
- Tang, M.; Sadowski, D.L.; Peng, C.; Vougioukas, S.G.; Klever, B.; Khalsa, S.D.S.; Brown, P.H.; Jin, Y. Tree-Level Almond Yield Estimation from High Resolution Aerial Imagery with Convolutional Neural Network. Front. Plant Sci. 2023, 14, 1070699. [Google Scholar] [CrossRef]
- Cordeiro, V.; Monteiro, A. Almond growing in Trás-os-Montes Region (Portugal). Acta Hortic. 2002, 2002, 5. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Gonzalez-Dugo, V.; García-Tejero, I.F.; López-Urrea, R.; Intrigliolo, D.S.; Egea, G. Quantitative Analysis of Almond Yield Response to Irrigation Regimes in Mediterranean Spain. Agric. Water Manag. 2023, 279, 108208. [Google Scholar] [CrossRef]
- Esparza, G.; DeJong, T.M.; Weinbaum, S.A.; Klein, I. Effects of Irrigation Deprivation during the Harvest Period on Yield Determinants in Mature Almond Trees. Tree Physiol. 2001, 21, 1073–1079. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 355–373. ISBN 978-3-030-24568-9. [Google Scholar]
- Phan, T.N.; Kappas, M. Application of MODIS Land Surface Temperature Data: A Systematic Literature Review and Analysis. J. Appl. Remote Sens. 2018, 12, 041501. [Google Scholar] [CrossRef]
- Acharya, T.; Yang, I. Exploring Landsat 8. Int. J. IT Eng. Appl. Sci. Res. 2015, 4, 4–10. [Google Scholar]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Zhang, D.; Wang, J. A Generalized Model to Predict Large-Scale Crop Yields Integrating Satellite-Based Vegetation Index Time Series and Phenology Metrics. Ecol. Indic. 2022, 137, 108759. [Google Scholar] [CrossRef]
- Ma, C.; Liu, M.; Ding, F.; Li, C.; Cui, Y.; Chen, W.; Wang, Y. Wheat Growth Monitoring and Yield Estimation Based on Remote Sensing Data Assimilation into the SAFY Crop Growth Model. Sci. Rep. 2022, 12, 5473. [Google Scholar] [CrossRef] [PubMed]
- Shammi, S.A.; Meng, Q. Use Time Series NDVI and EVI to Develop Dynamic Crop Growth Metrics for Yield Modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Sanches, G.M.; Duft, D.G.; Kölln, O.T.; Luciano, A.C.d.S.; De Castro, S.G.Q.; Okuno, F.M.; Franco, H.C.J. The Potential for RGB Images Obtained Using Unmanned Aerial Vehicle to Assess and Predict Yield in Sugarcane Fields. Int. J. Remote Sens. 2018, 39, 5402–5414. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Wang, J.; Li, Q. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Sensors 2021, 21, 1406. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of Relationship between Cereal Yield and NDVI for Selected Regions of Central Europe Based on MODIS Satellite Data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S. Crop Yield Prediction under Soil Salinity Using Satellite Derived Vegetation Indices. Field Crops Res. 2016, 192, 134–143. [Google Scholar] [CrossRef]
- da Silva, E.E.; Rojo Baio, F.H.; Ribeiro Teodoro, L.P.; da Silva Junior, C.A.; Borges, R.S.; Teodoro, P.E. UAV-Multispectral and Vegetation Indices in Soybean Grain Yield Prediction Based on in Situ Observation. Remote Sens. Appl. Soc. Environ. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Santos, J. Vintage Port prediction and climate change scenarios. OENO One 2023, 57. [Google Scholar] [CrossRef]
- Shen, M.; Luo, J.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Feng, L.; Duan, H. Random Forest: An Optimal Chlorophyll-a Algorithm for Optically Complex Inland Water Suffering Atmospheric Correction Uncertainties. J. Hydrol. 2022, 615, 128685. [Google Scholar] [CrossRef]
- Fazakis, N.; Kostopoulos, G.; Karlos, S.; Kotsiantis, S.; Sgarbas, K. Self-Trained eXtreme Gradient Boosting Trees. In Proceedings of the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–6. [Google Scholar]
- Singh, U.; Rizwan, M.; Alaraj, M.; Alsaidan, I. A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments. Energies 2021, 14, 5196. [Google Scholar] [CrossRef]
- Yu, N.; Haskins, T. Bagging Machine Learning Algorithms: A Generic Computing Framework Based on Machine-Learning Methods for Regional Rainfall Forecasting in Upstate New York. Informatics 2021, 8, 47. [Google Scholar] [CrossRef]
- Priestly, S.E.; Raimond, K.; Cohen, Y.; Brema, J.; Hemanth, D.J. Evaluation of a Novel Hybrid Lion Swarm Optimization—AdaBoostRegressor Model for Forecasting Monthly Precipitation. Sustain. Comput. Inform. Syst. 2023, 39, 100884. [Google Scholar] [CrossRef]
- Kramer, O. Scikit-Learn. In Machine Learning for Evolution Strategies; Kramer, O., Ed.; Studies in Big Data; Springer International Publishing: Cham, Switzerland, 2016; pp. 45–53. ISBN 978-3-319-33383-0. [Google Scholar]
- Isabona, J.; Imoize, A.L.; Kim, Y. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Sensors 2022, 22, 3776. [Google Scholar] [CrossRef]
- Prairie, Y.T. Evaluating the Predictive Power of Regression Models. Can. J. Fish. Aquat. Sci. 1996, 53, 490–492. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Tamimi, J.Z.A. Effects of Almond Milk on Body Measurements and Blood Pressure. Food Nutr. Sci. 2016, 7, 466–471. [Google Scholar] [CrossRef]
- Tombesi, S.; Scalia, R.; Connell, J.; Lampinen, B.; Dejong, T.M. Fruit Development in Almond Is Influenced by Early Spring Temperatures in California. J. Hortic. Sci. Biotechnol. 2010, 85, 317–322. [Google Scholar] [CrossRef]
Platform/ Satellite | Sensor | Product | Spatial Resolution (m) | Revisiting Time |
---|---|---|---|---|
GSMaP | Multi-Band Passive Microwave and Infrared Radiometers | Hourly Precipitation Rate | 11,000 | 3 h |
Terra | Moderate-Resolution Imaging Spectroradiometer (MODIS) | Daytime and Nighttime Land Surface Temperature (LST) | 1000 | 1 day |
Landsat 8 | Operational Land Imager (OLI) | RGB and NIR bands | 30 | 16 days |
Sentinel-2 | Multispectral Instrument (MSI) | RGB and NIR bands | 10 | 5 days |
PlanetScope | DOVE-R | RGB and NIR bands | 3 | 1 day |
Name of Index | Equation | Reference |
---|---|---|
Enhanced vegetation index 2 | [16] | |
Green–red vegetation index | [42] | |
Normalized difference vegetation index | [15] | |
Soil-adjusted vegetation index | [18] |
Type of Features | Selected Features |
---|---|
Irrig. | Irrigation |
CD | DTJan.; DTAug.; DTNov. (LY); NTMar. |
VI—PS | EVI2Feb.; GRVIMar.; GRVIJul.; SAVIDec. (LY) |
VI—S2 | EVI2Aug.; GRVIJan.; NDVIAug.; SAVIAug. |
VI—L8 | EVI2May.; NDVIMay.; NDVIAug.; SAVISep. (LY) |
Irrigation and CD | Irrigation; DTMar.; DTAug.; NTMar. |
Irrigation and VI—PS | Irrigation; GRVIMay.; NDVIJan.; SAVIMay. |
Irrigation and VI—S2 | Irrigation; EVI2Apr.; EVI2Jul.; GRVIJan. |
Irrigation and VI—L8 | Irrigation; SAVIMay; SAVIAug.; SAVISep. (LY) |
CD and VI—PS | DTAug.; EVI2Mar.; NDVIMar.; SAVIDec. (LY) |
CD and VI—S2 | DTJan.; DTOct. (LY); EVI2Dec. (LY); NDVIAug. |
CD and VI—L8 | DTMar.; DTAug.; EVI2Jun.; SAVISep. (LY) |
Irrigation, CD and VI—PS | Irrigation; NDVIJan.; SAVIMay.; DTMar. |
Irrigation, CD and VI—S2 | Irrigation; GRVIMay; DTMar.; DTAug. |
Irrigation, CD and VI—L8 | Irrigation; NDVIMay; DTMar.; NTFeb. |
Type of Features | RFR | XGBR | GBR | BR | ABR | |||||
---|---|---|---|---|---|---|---|---|---|---|
NE | MD | NE | MD | NE | MD | NE | MS | NE | LR | |
Irrig. | 100 | 3 | 100 | 3 | 100 | 3 | 100 | 0.5 | 100 | 1.0 |
CD | 100 | 3 | 100 | 3 | 300 | 3 | 100 | 1.0 | 100 | 0.1 |
VI—PS | 100 | 5 | 100 | 5 | 100 | 3 | 100 | 1.0 | 300 | 0.1 |
VI—S2 | 200 | 7 | 100 | 7 | 100 | 3 | 200 | 0.75 | 100 | 1.0 |
VI—L8 | 100 | 5 | 200 | 7 | 100 | 3 | 100 | 1.0 | 300 | 0.1 |
Irrig. and CD | 100 | 7 | 100 | 7 | 100 | 3 | 100 | 1.0 | 200 | 0.1 |
Irrig. and VI—PS | 200 | 3 | 100 | 5 | 300 | 3 | 200 | 1.0 | 100 | 0.1 |
Irrig. and VI—S2 | 300 | 5 | 100 | 5 | 300 | 3 | 300 | 1.0 | 300 | 1.0 |
Irrig. and VI—L8 | 200 | 5 | 200 | 5 | 200 | 3 | 200 | 1.0 | 300 | 0.1 |
CD and VI—PS | 200 | 7 | 200 | 5 | 300 | 3 | 200 | 1.0 | 100 | 1.0 |
CD and VI—S2 | 200 | 9 | 200 | 3 | 300 | 3 | 300 | 1.0 | 300 | 1.0 |
CD and VI—L8 | 100 | 5 | 100 | 5 | 300 | 3 | 100 | 1.0 | 200 | 0.1 |
Irrig., CD and VI—PS | 100 | 5 | 100 | 3 | 100 | 3 | 300 | 1.0 | 100 | 1.0 |
Irrig., CD and VI—S2 | 100 | 5 | 100 | 3 | 200 | 3 | 100 | 1.0 | 300 | 1.0 |
Irrig., CD and VI—L8 | 100 | 3 | 100 | 3 | 200 | 3 | 100 | 1.0 | 200 | 1.0 |
Type of Features | RFR | XGBR | GBR | BR | ABR | |||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
Irrig. | 159 | 211 | 161 | 211 | 161 | 211 | 160 | 212 | 158 | 206 |
CD | 184 | 237 | 210 | 255 | 178 | 211 | 184 | 238 | 179 | 223 |
VI—PS | 154 | 200 | 173 | 220 | 148 | 194 | 152 | 201 | 143 | 186 |
VI—S2 | 168 | 214 | 177 | 224 | 181 | 232 | 165 | 215 | 184 | 229 |
VI—L8 | 144 | 189 | 158 | 250 | 133 | 193 | 145 | 191 | 142 | 202 |
Irrig. and CD | 134 | 170 | 125 | 177 | 116 | 158 | 137 | 172 | 133 | 174 |
Irrig. and VI—PS | 132 | 158 | 107 | 138 | 117 | 138 | 131 | 159 | 118 | 153 |
Irrig. and VI—S2 | 147 | 190 | 130 | 168 | 130 | 168 | 149 | 192 | 120 | 163 |
Irrig. and VI—L8 | 145 | 176 | 141 | 199 | 111 | 147 | 144 | 178 | 142 | 180 |
CD and VI—PS | 157 | 193 | 151 | 189 | 152 | 210 | 160 | 193 | 143 | 177 |
CD and VI—S2 | 156 | 211 | 139 | 175 | 196 | 220 | 154 | 211 | 160 | 209 |
CD and VI—L8 | 139 | 174 | 127 | 159 | 123 | 162 | 133 | 171 | 114 | 154 |
Irrig., CD and VI—PS | 126 | 153 | 95 | 119 | 95 | 125 | 129 | 153 | 113 | 151 |
Irrig., CD and VI—S2 | 135 | 173 | 126 | 175 | 124 | 171 | 135 | 174 | 123 | 173 |
Irrig., CD and VI—L8 | 126 | 163 | 137 | 178 | 154 | 194 | 123 | 163 | 108 | 152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, N.; Fraga, H.; Sousa, J.J.; Pádua, L.; Bento, A.; Couto, P. Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction. AgriEngineering 2024, 6, 240-258. https://doi.org/10.3390/agriengineering6010015
Guimarães N, Fraga H, Sousa JJ, Pádua L, Bento A, Couto P. Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction. AgriEngineering. 2024; 6(1):240-258. https://doi.org/10.3390/agriengineering6010015
Chicago/Turabian StyleGuimarães, Nathalie, Helder Fraga, Joaquim J. Sousa, Luís Pádua, Albino Bento, and Pedro Couto. 2024. "Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction" AgriEngineering 6, no. 1: 240-258. https://doi.org/10.3390/agriengineering6010015
APA StyleGuimarães, N., Fraga, H., Sousa, J. J., Pádua, L., Bento, A., & Couto, P. (2024). Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction. AgriEngineering, 6(1), 240-258. https://doi.org/10.3390/agriengineering6010015