Can Soil Moisture and Crop Production Be Influenced by Different Cropping Systems?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Locations
2.2. Experiment 1—Soybean Cultivars under Irrigation
2.3. Experiment 2—Corn Hybrids under Conservation Agricultural Systems
2.4. Statistical Analysis
3. Results
3.1. Effects of Irrigation Management on the Soil Moisture Content and Grain Yield of Soybean Cultivars
3.2. Effects of Conservation Production Systems on the Soil Moisture Content and Grain Yield of Off-Season Corn Hybrids
4. Discussion
4.1. Effects of Irrigation Management on the Soil Moisture Content and Grain Yield of Soybean Cultivars
4.2. Effects on the Soil Moisture Content and Grain Yield of Off-Season Corn Hybrids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vilela, G.F.; Farias, A.R.; Paim, F.A.P.; Castro, G.S.A.; Oshiro, O.T.; Cerrado, C.A.C. Agricultural Production and Areas Designated for Environmental Preservation Registered in the Brazilian Rural Environmental Registry (Cadastro Ambiental Rural). J. Environ. Sci. Eng. B 2020, 9, 87–107. [Google Scholar] [CrossRef]
- CONAB. Perspectivas Para a Agropecuária. 2022. Available online: http://www.conab.gov.br (accessed on 4 April 2022).
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Heinemann, A.B.; Ramirez-Villegas, J.; Stone, L.F.; Didonet, A.D. Climate Change Determined Drought Stress Profiles in Rainfed Common Bean Production Systems in Brazil. Agric. For. Meteorol. 2017, 246, 64–77. [Google Scholar] [CrossRef]
- Borsato, E.; Rosa, L.; Marinello, F.; Tarolli, P.; D’Odorico, P. Weak and Strong Sustainability of Irrigation: A Framework for Irrigation Practices Under Limited Water Availability. Front. Sustain. Food. Syst. 2020, 4, 1–16. [Google Scholar] [CrossRef]
- Allani, M.; Frija, A.; Nemer, R.; Ribbe, L.; Sahli, A. Farmers’ Perceptions on an Irrigation Advisory Service: Evidence from Tunisia. Water 2022, 14, 3638. [Google Scholar] [CrossRef]
- De Ávila, V.S.; Petry, M.T.; Carlesso, R.; Martins, J.D.; González, M.G.; de Oliveira, Z.B.; Nunes, J.N.V.; Menegaz, S.T. Simu-lation of Soil Water Balance and Partitioning of Evapotranspiration of Maize Grown in Two Growing Seasons in Southern Brazil. Ciênc. Rural. 2017, 47, 20160998. [Google Scholar] [CrossRef]
- Sperandio, G.; Pagano, M.; Acampora, A.; Civitarese, V.; Cedrola, C.; Mattei, P.; Tomasone, R. Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations. Sustainability 2022, 14, 13991. [Google Scholar] [CrossRef]
- Contreras, J.I.; Baeza, R.; López, J.G.; Cánovas, G.; Alonso, F. Management of Fertigation in Horticultural Crops through Automation with Electrotensiometers: Effect on the Productivity of Water and Nutrients. Sensors 2021, 21, 190. [Google Scholar] [CrossRef]
- Şahan, S.; Şahin, U.; Jakubus, M. Water Cleaning Dispersive Solid Phase Microextraction and UHPLC-DAD Determination of 16 PAHs in Some Fertilizer Samples. SSRN Electron. J. 2021, 1–17. [Google Scholar] [CrossRef]
- Chakraborty, P.; Singh, J.; Singh, N.; Kumar, S. Assessing the Influence of Cover Crop on Soil Water Dynamics Using Soil Moisture Measurements and Hydrus-1D Simulations. Soil Sci. Soc. Am. J. 2022, 86, 1538–1552. [Google Scholar] [CrossRef]
- Schuler, H.R.; Alarcon, G.G.; Joner, F.; dos Santos, K.L.; Siminski, A.; Siddique, I. Ecosystem Services from Ecological Agro-forestry in Brazil: A Systematic Map of Scientific Evidence. Land 2022, 11, 83. [Google Scholar] [CrossRef]
- Werner, F.; Balbinot Junior, A.A.; Franchini, J.C.; Ferreira, A.S.; Silva, M.A.d.A. Agronomic Performance of Soybean Cultivars in an Agroforestry System. Pesqui. Agropecu. Trop. 2017, 47, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Nyaga, J.; Muthuri, C.W.; Barrios, E.; Öborn, I.; Sinclair, F.L. Enhancing Maize Productivity in Agroforestry Systems through Managing Competition: Lessons from Smallholders’ Farms, Rift Valley, Kenya. Agrofor. Syst. 2019, 93, 715–730. [Google Scholar] [CrossRef]
- Reichert, J.M.; Prevedello, J.; Gubiani, P.I.; Vogelmann, E.S.; Reinert, D.J.; Consensa, C.O.B.; Soares, J.C.W.; Srinivasan, R. Eucalyptus Tree Stockings Effect on Water Balance and Use Efficiency in Subtropical Sandy Soil. For. Ecol. Manag. 2021, 497, e119473. [Google Scholar] [CrossRef]
- Zuffo, A.M.; Ratke, R.F.; Aguilera, J.G.; Goes, R.J.; Steiner, F.; Martins, W.C.; da Silva, J.X.; Gonçalves, E.A. Nitrogen Response of Two Corn Cultivars Grown Alone or Intercropped in a Soybean Succession System in the Brazilian Cerrado. J. Plant Nutr. 2022, 45, 1–14. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Juliano, P.H.G.; Rodrigues, L.N.F.; de Freitas, R.S.; da Silva, G.S. Soybean and Maize in Agrosilvipastoral System after Thinning of Eucalyptus at Seven Years of Implantation. Int. J. Adv. Eng. Res. Sci. 2020, 7, 73–80. [Google Scholar] [CrossRef]
- Noojipady, P.; Morton, C.D.; Macedo, N.M.; Victoria, C.D.; Huang, C.; Gibbs, K.H.; Bolfe, L.E. Forest Carbon Emissions from Cropland Expansion in the Brazilian Cerrado Biome. Environ. Res. Lett. 2017, 12, e025004. [Google Scholar] [CrossRef]
- Pinheiro, F.M.; Nair, P.K.R.; Nair, V.D.; Tonucci, R.G.; Venturin, R.P. Soil Carbon Stock and Stability under Eucalyptus-Based Silvopasture and Other Land-Use Systems in the Cerrado Biodiversity Hotspot. J. Environ. Manag. 2021, 299, e113676. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- CONAB. Acompanhamento da Safra Brasileira de Grãos 2020/2021; Conab: Cassilândia, Brazil, 2022. [Google Scholar]
- Rosolem, C.A.; Neto, L.O.; Costa, V.E.; da Silva Grassmann, C. Ruzigrass Root Persistence and Soybean Root Growth. Plant Soil 2019, 442, 333–341. [Google Scholar] [CrossRef]
- IUSS. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Roma, Italy, 2014; ISBN 9251055114. [Google Scholar]
- Zuffo, A.M.; Ratke, R.F.; Steiner, F.; Aguilera, J.G. Agronomic Characteristics of Soybean Cultivars with Late-Season Nitrogen Application in Supplementation to the Inoculation of Bradyrhizobium spp. Ciênc. Agrotecnol. 2022, 46, e022521. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análises de Solos, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Zuffo, A.M.; Ratke, R.F.; Aguilera, J.G.; dos Santos Filho, F.N.; Yokota, L.A.; de Morais, D.B. Does Nitrogen Fertilization Associated to Inoculation of Bradyrhizobium japonicum Increase Productivit y and Protein Rates of Soybean? Rev. Agro. Meio Amb. 2020, 13, 1391–1407. [Google Scholar] [CrossRef]
- Sousa, D.M.G.; Lobato, E. Cerrado: Correção do Solo e Adubação, 2nd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2004. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration; FAO: Roma, Italy, 1998. [Google Scholar]
- Gava, R.; da Silva, E.E.; Baio, F.H.R. Calibration of an Electronic Moisture Sensor in Different Soil Textures. Braz. J. Biosyst. Eng. 2016, 23, 5–24. [Google Scholar]
- Zuffo, A.M.; Dias De Morais, K.A.; Aguilera, J.G.; Ratke, R.F.; Steiner, F. Agronomic Performance of Maize Crop in Response to the Application of Metabasalt Powder Rates. Bulg. J. Agric. Sci. 2022, 28, 482–487. Available online: https://www.agrojournal.org/28/03-17.pdf (accessed on 2 January 2023).
- Ceccon, G.; Concenço, G.; Borghi, E.; Duarte, A.P.; Silva, A.F.; Kappes, C.; Almeida, R.E.M. Deployment and Management of Forage Crops in Intercrop with Off-Season Corn, 2nd ed.; Embrapa Agropecuária Oeste: Dourados, Brazil, 2018. [Google Scholar]
- Bhering, L.L. Rbio: A Tool for Biometric and Statistical Analysis Using the R Platform. Crop Breed. Appl. Biotc. 2017, 17, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, S.; Sainju, U.M.; Ghimire, R.; Zhao, F. A Meta-Analysis on Cover Crop Impact on Soil Water Storage, Succeeding Crop Yield, and Water-Use Efficiency. Agric. Water Manag. 2021, 256, e107085. [Google Scholar] [CrossRef]
- Alfonso, C.; Barbieri, P.A.; Hernández, M.D.; Lewczuk, N.A.; Martínez, J.P.; Echarte, M.M.; Echarte, L. Water Productivity in Soybean Following a Cover Crop in a Humid Environment. Agric. Water Manag. 2020, 232, e106045. [Google Scholar] [CrossRef]
- Da Silva, E.H.F.M.; Gonçalves, A.O.; Pereira, R.A.; Fattori Júnior, I.M.; Sobenko, L.R.; Marin, F.R. Soybean Irrigation Requirements and Canopy-Atmosphere Coupling in Southern Brazil. Agric. Water Manag. 2019, 218, 1–7. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Battisti, R.; Câmara, G.M.S.; Farias, J.R.B.; Hampf, A.C.; Nendel, C. The Soybean Yield Gap in Brazil—Magnitude, Causes and Possible Solutions for Sustainable Production. J. Agric. Sci. 2015, 153, 1394–1411. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.S.; Balbinot, A.A.; Werner, F.; Zucareli, C. Yield Performance of Soybean Cultivars with Indeterminate Growth Habits in Response to Plant Spatial Arrangement. Semin. Cienc. Agric. 2019, 40, 2905–2916. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; McClure, A.M.; Mengistu, A.; Abbas, H.K. The Influence of Agricultural Practices, the Environment, and Cultivar Differences on Soybean Seed Protein, Oil, Sugars, and Amino Acids. Plants 2020, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Mengistu, A.; Smith, J.R.; Abbas, H.K.; Accinelli, C.; Shier, W.T. Effects of Charcoal Rot on Soybean Seed Composition in Soybean Genotypes That Differ in Charcoal Rot Resistance under Irrigated and Non-Irrigated Conditions. Plants 2021, 10, 1801. [Google Scholar] [CrossRef]
- Sintaha, M.; Man, C.-K.; Yung, W.-S.; Duan, S.; Li, M.-W.; Lam, H.-M. Drought Stress Priming Improved the Drought Tolerance of Soybean. Plants 2022, 11, 2954. [Google Scholar] [CrossRef]
- Cera, J.C.; Streck, N.A.; Fensterseifer, C.A.J.; Ferraz, S.E.T.; Bexaira, K.P.; Silveira, W.B.; Cardoso, Â.P. Soybean Yield in Future Climate Scenarios for the State of Rio Grande Do Sul, Brazil. Pesqui. Agropecu. Bras. 2017, 52, 380–392. [Google Scholar] [CrossRef]
- Rosario-Lebron, A.; Leslie, A.W.; Yurchak, V.L.; Chen, G.; Hooks, C.R.R. Can Winter Cover Crop Termination Practices Impact Weed Suppression, Soil Moisture, and Yield in No-till Soybean [Glycine max (L.) Merr.]? Crop Prot. 2019, 116, 132–141. [Google Scholar] [CrossRef]
- Kimm, H.; Guan, K.; Gentine, P.; Wu, J.; Bernacchi, C.J.; Sulman, B.N.; Griffis, T.J.; Lin, C. Redefining Droughts for the U.S. Corn Belt: The Dominant Role of Atmospheric Vapor Pressure Deficit over Soil Moisture in Regulating Stomatal Behavior of Maize and Soybean. Agric. For. Meteorol. 2020, 287, e107930. [Google Scholar] [CrossRef]
- Peng, X.; Thevathasan, N.V.; Gordon, A.M.; Mohammed, I.; Gao, P. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada. PLoS ONE 2015, 10, e0129467. [Google Scholar] [CrossRef] [Green Version]
- Campanha, M.M.; Santos, R.H.S.; de Freitas, G.B.; Martinez, H.E.P.; Jaramillo-Botero, C.; Garcia, S.L. Comparative Litter and Soil Characteristics in Coffee Trees (Coffea arabica L.) Grown in Agroforestry and Monoculture Systems, in Zona da Mata MG. Rev. Arv. 2007, 31, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Schume, H.; Hailu, Z.; Hailu, T.; Sieghardt, M.; Godbold, D.L. Spatial Analysis of Soil Water Depletion and Biomass Production in the Transition Zone between a Eucalyptus camaldulensis Stand and a Maize Field in Ethiopia. Agric. For. Meteorol. 2022, 320, e108956. [Google Scholar] [CrossRef]
- Mugunga, C.P.; Giller, K.E.; Mohren, G.M.J. Tree-Crop Interactions in Maize-Eucalypt Woodlot Systems in Southern Rwanda. Eur. J. Agron. 2017, 86, 78–86. [Google Scholar] [CrossRef]
- Bertalot, M.J.A.; Guerrini, I.A.; Mendoza, E.; Pinto, M.S.V. Performance Of Corn (Zea mays L.) In Succession With Black Oat (Avena strigosa Schreb.) Under Agroforestry And Traditional Management. Rev. Arv. 2010, 34, 597–608. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Li, X.; Zhang, C. Effect of Intercropping on Maize Grain Yield and Yield Components. J. Integr. Agric. 2019, 18, 1690–1700. [Google Scholar] [CrossRef]
- Morais, D.B.; Felippe Ratke, R.; Bortolon, L.; Lacerda, J.J.J.; Edvan, R.L.; Zuffo, A.M.; Pacheco, L.P. Maize Intercropping Systems Improve Nutrient for the Cowpea Crop in Sandy Soils. Commun. Soil Sci. Plant Anal. 2020, 51, 491–502. [Google Scholar] [CrossRef]
- Li, Q.-Z.; Sun, J.-H.; Wei, X.-J.; Christie, P.; Zhang, F.-S.; Li, L. Overyielding and Interspecific Interactions Mediated by Nitrogen Fertilization in Strip Intercropping of Maize with Faba Bean, Wheat and Barley. Plant Soil 2011, 339, 147–161. [Google Scholar] [CrossRef]
Depth | ϴfc | ϴpwp | AWC | BD | PD | TP | Soil Particle Size | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||||
m | m3 m−3 | kg dm−3 | m3 m−3 | g kg−1 | |||||
0–0.15 | 0.413 | 0.282 | 0.131 | 1.34 | 2.65 | 0.536 | 392 | 67 | 541 |
0.15–0.30 | 0.383 | 0.262 | 0.121 | 1.44 | 2.65 | 0.484 | 368 | 45 | 587 |
No | Cultivar | Maturity Cycle (Days) | Relative Maturity Group | Growth Habit | Soil Fertility Requirement |
---|---|---|---|---|---|
C01 | NA 5909 RG | 95–105 | 6.2 | Indeterminate | High |
C02 | BMX DESAFIO RR | 110–120 | 7.4 | Indeterminate | High |
C03 | CD 2737 RR | 105–115 | 7.3 | Indeterminate | High |
C04 | TMG 7067 IPRO | 110–115 | 7.2 | Semidetermined | High |
Causes of Variation | Soil Moisture Content | Thousand-Grain Mass | Grain Yield |
---|---|---|---|
Block | 2.59 NS | 0.27 NS | 0.95 NS |
Reading times (R) | 32.64 *** | – | – |
Straw level (S) | 0.34 NS | 0.01 NS | 0.01 NS |
Irrigation (I) | 37.96 *** | 1.36 NS | 3.21 NS |
Soybean Cultivar (C) | 1.91 NS | 11.79 *** | 3.37 * |
R × S | 1.15 NS | – | – |
R × I | 22.97 *** | – | – |
R × C | 1.70 NS | – | – |
S × I | 1.59 NS | 0.33 NS | 0.28 NS |
S × C | 1.81 NS | 0.18 NS | 2.40 * |
I × C | 0.23 NS | 0.42 NS | 1.16 NS |
R × S × I | 0.36 NS | – | – |
R × S × C | 0.67 NS | – | – |
R × I × C | 0.90 NS | – | – |
S × I × C | 1.00 NS | 0.45 NS | 0.30 NS |
R × S × I × C | 0.70 NS | – | – |
CV (%) | 21.03 | 20.29 | 36.70 |
Causes of Variation | Soil Moisture Content | Thousand-Grain Mass | Grain Yield |
---|---|---|---|
F value | |||
Block | 2.93 NS | 8.69 NS | 32.16 ** |
Reading times (R) | 80.64 *** | – | – |
Production system (S) | 7.71 ** | 0.07 NS | 1.48 NS |
Intercropped cultivation (I) | 0.02 NS | 0.49 NS | 0.26 NS |
Corn hybrid (H) | 2.33 NS | 3.64 * | 1.20 NS |
R × S | 1.96 NS | – | – |
R × I | 1.47 NS | – | – |
R × H | 0.43 NS | – | – |
S × I | 1.88 NS | 4.17 NS | 4.43 NS |
S × H | 0.68 NS | 0.24 NS | 0.39 NS |
I × H | 1.85 NS | 0.08 NS | 0.74 NS |
R × S × I | 1.36 NS | – | – |
R × S × H | 0.55 NS | – | – |
R × I ×H | 1.29 NS | – | – |
S × I × H | 0.03 NS | 0.06 NS | 5.79 ** |
R × S × I × H | 0.73 NS | – | – |
CV (%) | 16.24 | 21.15 | 30.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratke, R.F.; Zuffo, A.M.; Steiner, F.; Aguilera, J.G.; de Godoy, M.L.; Gava, R.; de Oliveira, J.T.; Filho, T.A.d.S.; Viana, P.R.N.; Ratke, L.P.T.; et al. Can Soil Moisture and Crop Production Be Influenced by Different Cropping Systems? AgriEngineering 2023, 5, 112-126. https://doi.org/10.3390/agriengineering5010007
Ratke RF, Zuffo AM, Steiner F, Aguilera JG, de Godoy ML, Gava R, de Oliveira JT, Filho TAdS, Viana PRN, Ratke LPT, et al. Can Soil Moisture and Crop Production Be Influenced by Different Cropping Systems? AgriEngineering. 2023; 5(1):112-126. https://doi.org/10.3390/agriengineering5010007
Chicago/Turabian StyleRatke, Rafael Felippe, Alan Mario Zuffo, Fábio Steiner, Jorge González Aguilera, Matheus Liber de Godoy, Ricardo Gava, Job Teixeira de Oliveira, Tercio Alberto dos Santos Filho, Paulo Roberto Nunes Viana, Luis Paulo Tomaz Ratke, and et al. 2023. "Can Soil Moisture and Crop Production Be Influenced by Different Cropping Systems?" AgriEngineering 5, no. 1: 112-126. https://doi.org/10.3390/agriengineering5010007
APA StyleRatke, R. F., Zuffo, A. M., Steiner, F., Aguilera, J. G., de Godoy, M. L., Gava, R., de Oliveira, J. T., Filho, T. A. d. S., Viana, P. R. N., Ratke, L. P. T., Ancca, S. M., Campano, M. R. R., & Gonzales, H. H. S. (2023). Can Soil Moisture and Crop Production Be Influenced by Different Cropping Systems? AgriEngineering, 5(1), 112-126. https://doi.org/10.3390/agriengineering5010007