Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics
Abstract
:1. Introduction
1.1. Purpose and Objectives
- To review current research on microbial degradation of agricultural plastics using microorganisms such as bacteria, fungi, and enzymes;
- To explore the role of enzyme-embedded agricultural plastics in improving commercial recyclability;
- To explore the suitability of intelligent technologies, including artificial intelligence (AI) and machine learning (ML), in agricultural plastic waste management.
1.2. State-of-the-Art Research on Enzyme-Embedded Biodegradable Agricultural Plastics and Microbial Degradation
2. Research Method
2.1. Justification for the Scoping Review
2.2. Research Questions
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction and Synthesis
3. Results and Discussion
3.1. Replacing Fossil-Fuel-Based Agricultural Plastics with Bio-Based Polymers
3.2. Bioplastics for Smart Agriculture and Replacement of Fossil-Fuel-Based Plastics
3.2.1. Theme 1: Biodegradable Agricultural Plastics (Thermoplastic Starch (TPS), Polyhydroxyalkanoates (PHA), Polybutylene Adipate Terephthalate (PBAT), and PLA)
3.2.2. Theme 2: Microbial Degradation and Enzyme/Microorganism-Embedded Biodegradable Agricultural Plastics
3.2.3. Theme 3: Methanotrophs, Acinetobacter, Pseudomonas aeruginosa, Bacillus, for Biological Degradation of Agricultural Plastic Waste
3.3. Intelligent Farming Technologies, Geospatial, and Enzyme-Embedded Plastics and Bioplastics
3.3.1. Artificial Intelligence, Machine Learning, and Smart Technologies in Agricultural Plastic Waste Management
3.3.2. Geospatial Estimation of the Distribution of Agricultural Plastics and Development of Well-Fit Collection Procedures
3.3.3. Cost Benefits of Geospatial Mapping of Agricultural Plastic Waste
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chow, J.; Perez-Garcia, P.; Dierkes, R.; Streit, W.R. Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb. Biotechnol. 2022, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Greene, A.F.; Vaidya, A.; Collet, C.; Wade, K.R.; Patel, M.; Gaugler, M.; West, M.; Petcu, M.; Parker, K. 3D-Printed Enzyme-Embedded Plastics. Biomacromolecules 2021, 22, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, S.K. Design and development of e-smart robotics-based underground solid waste storage and transportation system. J. Clean. Prod. 2022, 343, 130987. [Google Scholar] [CrossRef]
- Nielsen, T.D.; Hasselbalch, J.; Holmberg, K.; Stripple, J. Politics and the plastic crisis: A review throughout the plastic life cycle. WIREs Energy Environ. 2020, 9, e360. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Qamar, S.A.; Ashraf, S.S.; Rodríguez-Couto, S.; Iqbal, H.M.N. Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Adv. Colloid Interface Sci. 2021, 293, 102438. [Google Scholar] [CrossRef] [PubMed]
- DelRe, C.; Jiang, Y.; Kang, P.; Kwon, J.; Hall, A.; Jayapurna, I.; Ruan, Z.; Ma, L.; Zolkin, K.; Li, T.; et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 2021, 592, 558–563. [Google Scholar] [CrossRef] [PubMed]
- González-henríquez, C.M.; Sarabia-vallejos, M.A.; Rodriguez-hernandez, J. Progress in Polymer Science Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog. Polym. Sci. 2019, 94, 57–116. [Google Scholar] [CrossRef]
- Adhikari, R.; Bristow, K.L.; Casey, P.S.; Freischmidt, G.; Hornbuckle, J.W.; Adhikari, B. Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agric. Water Manag. 2016, 169, 1–13. [Google Scholar] [CrossRef]
- Marí, A.I.; Pardo, G.; Cirujeda, A.; Martínez, Y. Economic evaluation of biodegradable plastic films and paper mulches used in open-air grown pepper (Capsicum annum L.) crop. Agronomy 2019, 9, 36. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Flury, M. Is Biodegradable Plastic Mulch the Solution to Agriculture’s Plastic Problem? Environ. Sci. Technol. 2017, 51, 1068–1069. [Google Scholar] [CrossRef] [PubMed]
- Vanderreydt, I.; Rommens, T.; Tenhunen, A.; Mortensen, L.F.; Tange, I. Greenhouse gas emissions and natural capital implications of plastics (including biobased plastics). Eur. Environ. Agency 2021. Eionet Report—ETC/WMGE 2021/3. [Google Scholar]
- Huang, Q.; Hiyama, M.; Kabe, T.; Kimura, S.; Iwata, T. Enzymatic Self-Biodegradation of Poly(l-lactic acid) Films by Embedded Heat-Treated and Immobilized Proteinase K. Biomacromolecules 2020, 21, 3301–3307. [Google Scholar] [CrossRef] [PubMed]
- Mehlhase, S. Enzymes successfully embedded in plastics. Fraunhofer Institute for Applied Polymer Research IAP. 2021. Available online: https://www.fraunhofer.de/content/dam/zv/en/press-media/2021/june-2021/iap-enzymes-embedded-in-plastics.pdf (accessed on 25 November 2022).
- Tang, K.H.D.; Lock, S.S.M.; Yap, P.-S.; Cheah, K.W.; Chan, Y.H.; Yiin, C.L.; Ku, A.Z.E.; Loy, A.C.M.; Chin, B.L.F.; Chai, Y.H. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. Sci. Total Environ. 2022, 832, 154868. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Ceraulo, M.; Testa, P.; Morreale, M. Biodegradable polymers for the production of nets for agricultural product packaging. Materials 2021, 14, 323. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental Sustainability of Greenhouse Covering Materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef] [Green Version]
- Maraveas, C.; Bayer, I.S.; Bartzanas, T. 4D printing: Perspectives for the production of sustainable plastics for agriculture. Biotechnol. Adv. 2021, 54, 107785. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, C.G. A comparative study on the distribution behavior of microplastics through FT-IR analysis on different land uses in agricultural soils. Environ. Res. 2022, 215, 114404. [Google Scholar] [CrossRef]
- You, X.; Wang, S.; Li, G.; Du, L.; Dong, X. Microplastics in the soil: A review of distribution, anthropogenic impact, and interaction with soil microorganisms based on meta-analysis. Sci. Total Environ. 2022, 832, 154975. [Google Scholar] [CrossRef]
- Batista, T.; Cansado, I.P.d.P.; Tita, B.; Ilhéu, A.; Metrogos, L.; Mourão, P.A.M.; Nabais, J.M.V.; Castanheiro, J.; Borges, C.; Matos, G. Dealing with Plastic Waste from Agriculture Activity. Agronomy 2022, 12, 134. [Google Scholar] [CrossRef]
- Narancic, T.; Cerrone, F.; Beagan, N.; O’Connor, K.E. Recent advances in bioplastics: Application and biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef]
- Yin, W.; Xie, Z.; Yin, Y.; Yi, J.; Liu, X.; Wu, H.; Wang, S.; Xie, Y.; Yang, Y. Aging behavior and lifetime prediction of PMMA under tensile stress and liquid scintillator conditions. Adv. Ind. Eng. Polym. Res. 2019, 2, 82–87. [Google Scholar] [CrossRef]
- World Bank Agricultural Pollution Plastics. 2022. Available online: https://documents1.worldbank.org/curated/en/122161521208357388/pdf/124346-repl-WB-Knowledge-Plastic.pdf (accessed on 12 July 2022).
- Gray, A. Body as voice: Restorative dance/movement psychotherapy with survivors of relational trauma. In The Routledge International Handbook of Embodied Perspectives in Psychotherapy; Routledge: London, UK, 2019; pp. 147–160. [Google Scholar] [CrossRef]
- Sargeant, J.M.; O’Connor, A.M. Scoping Reviews, Systematic Reviews, and Meta-Analysis: Applications in Veterinary Medicine. Front. Vet. Sci. 2020, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brings, J.; Salmon, A.; Saritas, S. Context uncertainty in requirements engineering: Definition of a search strategy for a systematic review and preliminary results. CEUR Workshop Proc. 2015, 1342, 171–178. [Google Scholar]
- Maraveas, C.; Piromalis, D.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Applications of IoT for optimized greenhouse environment and resources management. Comput. Electron. Agric. 2022, 198, 106993. [Google Scholar] [CrossRef]
- Maraveas, C.; Bartzanas, T. Sensors for structural health monitoring of agricultural structures. Sensors 2021, 21, 314. [Google Scholar] [CrossRef]
- Bogner, J.; Verdecchia, R.; Gerostathopoulos, I. Characterizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic Mapping Study. In Proceedings of the 2021 IEEE/ACM International Conference on Technical Debt (TechDebt), Madrid, Spain, 19–21 May 2021; pp. 64–73. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A Systematic Review of IoT Solutions for Smart Farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef]
- Wohlin, C.; Kalinowski, M.; Romero Felizardo, K.; Mendes, E. Successful combination of database search and snowballing for identification of primary studies in systematic literature studies. Inf. Softw. Technol. 2022, 147, 106908. [Google Scholar] [CrossRef]
- Kiger, M.E.; Varpio, L. Thematic analysis of qualitative data: AMEE Guide. Med. Teach. 2020, 42, 846–854. [Google Scholar] [CrossRef]
- Vaismoradi, M.; Turunen, H.; Bondas, T. Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nurs. Health Sci. 2013, 15, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Tello-Marquina, J.C. The management of agriculture plastic waste in the framework of circular economy. Case of the almeria greenhouse (Spain). Int. J. Environ. Res. Public Health 2021, 18, 12042. [Google Scholar] [CrossRef] [PubMed]
- Maier, N.; Biodegradable Plastics Approaches and experiences from 16 Members of the EPA Network. European Network of the Heads of Environment Protection Agencies (EPA Network)—Interest Group on Plastics. 2018. Available online: file:///C:/Users/MDPI/Downloads/IG%20Plastics_Working%20paper_Biodegradable%20plastics.pdf (accessed on 22 November 2022).
- LeMoine, B.; Erälinna, L.; Trovati, G.; Casallo, I.M.; Amate, J.J.; Zlatar, K.; Butlewski, K.; Ojanpera, M.; Picuno, P.; EIP-AGRI Focus Group. Reducing the plastic footprint of agriculture. EIP-Agric. Netw. 2021. Available online: https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-plastic-footprint-final (accessed on 22 November 2022).
- Siegenthaler, K.O.; Künkel, A.; Skupin, G.; Yamamoto, M. Ecoflex® and Ecovio®: Biodegradable, Performance-Enabling Plastics. In Synthetic Biodegradable Polymers. Advances in Polymer Science; Rieger, B., Künkel, A., Coates, G.W., Reichardt, R., Dinjus, E., Zevaco, T.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 91–136. [Google Scholar]
- Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential. Waste Manag. 2012, 32, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, D.; Hiskakis, M.; Babou, E. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Manag. 2013, 33, 1516–1530. [Google Scholar] [CrossRef]
- Bos, U.; Makinshi, C.; Fischer, M. Life Cycle Assessment of Common Used Agricultural Plastic Products in the E.U. Acta Hortic. 2008, 801, 227–236. [Google Scholar]
- Singh, P.; Sharma, V.P. Integrated Plastic Waste Management: Environmental and Improved Health Approaches. Procedia Environ. Sci. 2016, 35, 692–700. [Google Scholar] [CrossRef]
- Mankin, R.W. Applications of acoustics in insect pest management. CABI Rev. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.K.H.; Thian, E.S. Biodegradation of polymers in managing plastic waste—A review. Sci. Total Environ. 2022, 813, 151880. [Google Scholar] [CrossRef]
- Shamsuyeva, M.; Endres, H.J. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos. Part C Open Access 2021, 6, 100168. [Google Scholar] [CrossRef]
- Aldas, M.; Rayón, E.; López-Martínez, J.; Arrieta, M.P. A deeper microscopic study of the interaction between gum rosin derivatives and a mater-Bi type bioplastic. Polymers 2020, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Palfery, D. Temperature-dependent polylactic acid (PLA) anaerobic biodegradability. Int. J. Environ. Waste Manag. 2012, 10, 297–306. [Google Scholar] [CrossRef]
- Iwamoto, A.; Tokiwa, Y. Enzymatic degradation of plastics containing polycaprolactone. Polym. Degrad. Stab. 1994, 45, 205–213. [Google Scholar] [CrossRef]
- Liu, L.; Xu, M.; Ye, Y.; Zhang, B. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. Sci. Total Environ. 2022, 806, 151312. [Google Scholar] [CrossRef] [PubMed]
- Grossman, E. The Biggest Source of Plastic Trash You’ve Never Heard of. 2015. Available online: https://ensia.com/features/the-biggest-source-of-plastic-trash-youve-never-heard-of/ (accessed on 12 November 2022).
- Jee, C. A New Chemical Process Could Turn a Quarter of Our Plastic Waste into Clean Fuel. MIT Technol. Rev. 2019. Available online: https://www.technologyreview.com/2019/02/11/137483/a-new-chemical-process-could-turn-a-quarter-of-our-plastic-waste-into-clean-fuel/ (accessed on 14 October 2022).
- UNEP. How Plastic Is Infiltrating the World’s Soils. 2021. Available online: https://www.unep.org/news-and-stories/story/how-plastic-infiltrating-worlds-soils (accessed on 2 October 2022).
- Lange, J.P. Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R Soc. Lond. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Dijkgraaf, E.; Gradus, R. Post-collection Separation of Plastic Waste: Better for the Environment and Lower Collection Costs? Environ. Resour. Econ. 2020, 77, 127–142. [Google Scholar] [CrossRef]
- Ali, M.F.; Siddiqui, M.N. Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue. J. Anal. Appl. Pyrolysis 2005, 74, 282–289. [Google Scholar] [CrossRef]
- Kumar Sen, S.; Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. Eng. 2015, 3, 462–473. [Google Scholar] [CrossRef]
- Bahl, S.; Dolma, J.; Singh, J.J.; Sehgal, S. Biodegradation of plastics: A state of the art review. Mater. Today Proc. 2020, 39, 31–34. [Google Scholar] [CrossRef]
- Chen, C.C.; Dai, L.; Ma, L.; Guo, R.T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 2020, 4, 114–126. [Google Scholar] [CrossRef]
- Jaiswal, S.; Sharma, B.; Shukla, P. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 2020, 17, 100567. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Arya, S.K. Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Clean. Eng. Technol. 2021, 2, 100083. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef] [PubMed]
- Amobonye, A.; Bhagwat, P.; Singh, S.; Pillai, S. Plastic biodegradation: Frontline microbes and their enzymes. Sci. Total Environ. 2021, 759, 143536. [Google Scholar] [CrossRef]
- Akan, O.D.; Udofia, G.E.; Okeke, E.S.; Mgbechidinma, C.L.; Okoye, C.O.; Zoclanclounon, Y.A.B.; Atakpa, E.O.; Adebanjo, O.O. Plastic waste: Status, degradation and microbial management options for Africa. J. Environ. Manag. 2021, 292, 112758. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Elisabetta, M.; Temporiti, E.; Nicola, L.; Nielsen, E.; Tosi, S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022, 10, 1180. [Google Scholar]
- Hou, L.; Majumder, E.L.W. Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials 2021, 14, 503. [Google Scholar] [CrossRef]
- Rana, K.I. Usage of Potential Micro-organisms for Degradation of Plastics. Open J. Environ. Biol. 2019, 4, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef] [PubMed]
- Gerassimidou, S.; Martin, O.V.; Chapman, S.P.; Hahladakis, J.N.; Iacovidou, E. Development of an integrated sustainability matrix to depict challenges and trade-offs of introducing bio-based plastics in the food packaging value chain. J. Clean. Prod. 2021, 286, 125378. [Google Scholar] [CrossRef]
- Granić, A.; Marangunić, N. Technology acceptance model in educational context: A systematic literature review. Br. J. Educ. Technol. 2019, 50, 2572–2593. [Google Scholar] [CrossRef]
- Kendall, H.; Clark, B.; Li, W.; Jin, S.; Jones, G.D.; Chen, J.; Taylor, J.; Li, Z.; Frewer, L.J. Precision agriculture technology adoption: A qualitative study of small-scale commercial “family farms” located in the North China Plain. Precis. Agric. 2022, 23, 319–351. [Google Scholar] [CrossRef]
- Moharir, R.V.; Kumar, S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Clean. Prod. 2019, 208, 65–76. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Shent, H.; Pugh, R.J.; Forssberg, E. A review of plastics waste recycling and the flotation of plastics. Resour. Conserv. Recycl. 1999, 25, 85–109. [Google Scholar] [CrossRef]
- Leist, S.K.; Zhou, J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys. Prototyp. 2016, 11, 249–262. [Google Scholar] [CrossRef]
- Khanna, K.; Kohli, S.K.; Handa, N.; Kaur, H.; Ohri, P.; Bhardwaj, R.; Yousaf, B.; Rinklebe, J.; Ahmad, P. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicol. Environ. Saf. 2021, 222, 112459. [Google Scholar] [CrossRef]
- Muenmee, S.; Chiemchaisri, W.; Chiemchaisri, C. Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int. Biodeterior. Biodegrad. 2015, 102, 172–181. [Google Scholar] [CrossRef]
- Jeon, J.M.; Park, S.J.; Choi, T.R.; Park, J.H.; Yang, Y.H.; Yoon, J.J. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym. Degrad. Stab. 2021, 191, 109662. [Google Scholar] [CrossRef]
- Guerrero-Cruz, S.; Vaksmaa, A.; Horn, M.A.; Niemann, H.; Pijuan, M.; Ho, A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front. Microbiol. 2021, 12, 1–28. [Google Scholar] [CrossRef]
- Nielsen, C.L.; Miller, C.D. Secretion of Bioplastic Polymers from Methanotrophic Bacteria Grown Using Natural Gas; Utah State University Student Research Symposium: Logan, UT, USA, 2016; Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1300&context=researchweek (accessed on 1 October 2022).
- Qin, Z.H.; Mou, J.H.; Chao, C.Y.H.; Chopra, S.S.; Daoud, W.; Yuan Leu, S.; Ning, Z.; Tso, C.Y.; Chan, C.K.; Tang, S.; et al. Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. ChemSusChem 2021, 14, 4103–4114. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Moussavi, G.; Rezaei, M. Enhanced peroxidase-mediated biodegradation of polyethylene using the bacterial consortia under H2O2-biostimulation. Polymer 2022, 240, 124508. [Google Scholar] [CrossRef]
- Yin, C.F.; Xu, Y.; Zhou, N.Y. Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. Int. Biodeterior. Biodegrad. 2020, 155, 105089. [Google Scholar] [CrossRef]
- Richert, A.; Dąbrowska, G.B. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. Int. J. Biol. Macromol. 2021, 176, 226–232. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Sangale, M.K.; Ade, A.B. Bioremediation Technology for Plastic Waste; Springer: Singapore, 2019. [Google Scholar]
- Koffi, A.; Toubal, L.; Jin, M.; Koffi, D.; Döpper, F.; Schmidt, H.-W.; Neuber, C. Extrusion-based 3D printing with high-density polyethylene Birch-fiber composites. J. Appl. Polym. Sci. 2022, 139, 51937. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics-a review. Environ. Sci. Pollut. Res. Int. 2021, 28, 12321–12333. [Google Scholar] [CrossRef]
- Chowdhury, M.H. Development of Automatic Smart Waste Sorter Machine. In Proceedings of the International Conference on Mechanical, Industrial and Materials Engineering 2013 (ICMIME2013), Rajshahi, Bangladesh, 1–3 November 2013. Paper ID: AM-012. [Google Scholar]
- Glouche, Y.; Couderc, P. A Smart Waste Management with Self-Describing objects. In Proceedings of the SMART 2013: The Second International Conference on Smart Systems, Devices and Technologies, Rome, Italy, 23–28 June 2013; p. 9. [Google Scholar]
- Thakker, S.; Narayanamoorthi, R. Smart and wireless waste management. In Proceedings of the ICIIECS 2015—2015 IEEE International Conference on Innovations in Information, Embedded and Communication Systems, Coimbatore, India, 19–20 March 2015; pp. 2–5. [Google Scholar] [CrossRef]
- Rial-Lovera, R. Agricultural Robots: Drivers, barriers and opportunities for adoption. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018; pp. 1–5. [Google Scholar]
- Bie, W.; Gradziuk, P.; Golonko, M.; Gołasa, P.; Wysoki, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar]
- Junaid, M.; Shaikh, A.; Hassan, M.U.; Alghamdi, A.; Rajab, K.; Al Reshan, M.S.; Alkinani, M. Smart agriculture cloud using AI based techniques. Energies 2021, 14, 5129. [Google Scholar] [CrossRef]
- Ouammi, A.; Achour, Y.; Dagdougui, H.; Zejli, D. Energy for Sustainable Development Optimal operation scheduling for a smart greenhouse integrated microgrid. Energy Sustain. Dev. 2020, 58, 129–137. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Edwards, G.T.C.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management—A review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.; Abu Talib, M.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag. 2020, 109, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, M.L.; Karlsen, C.B.; Klarskov, P.; Hinge, M. Plastic classification via in-line hyperspectral camera analysis and unsupervised machine learning. Vib. Spectrosc. 2022, 118, 103329. [Google Scholar] [CrossRef]
- Yu, K.H.; Zhang, Y.; Li, D.; Montenegro-Marin, C.E.; Kumar, P.M. Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environ. Impact Assess. Rev. 2021, 86, 106492. [Google Scholar] [CrossRef]
- Gnann, N.; Garaba, S.; Zielinski, O. Plastic Waste Detection Assisted by Artifical Intelligence. In Proceedings of the 22nd EGU General Assembly, Online, 4–8 May 2020; Available online: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-975.html?pdf (accessed on 1 October 2022).
- Hidalgo-Crespo, J.; Álvarez-Mendoza, C.I.; Soto, M.; Amaya-Rivas, J.L. Quantification and mapping of domestic plastic waste using GIS/GPS approach at the city of Guayaquil. Procedia CIRP 2022, 105, 86–91. [Google Scholar] [CrossRef]
- Lukka, T.J.; Tossavainen, T.; Kujala, J.V.; Raiko, T. ZenRobotics Recycler—Robotic Sorting using Machine Learning. In Proceedings of the International Conference on Sensor-Based Sorting (SBS), Aachen, Germany, 11–13 March 2014; Available online: https://users.ics.aalto.fi/praiko/papers/SBS14.pdf (accessed on 1 October 2022).
- Wolf, M.; Van Den Berg, K.; Garaba, S.P.; Gnann, N.; Sattler, K.; Stahl, F.; Zielinski, O. Machine learning for aquatic plastic litter detection, classification and quantification (APLASTIC-Q). Environ. Res. Lett. 2020, 15, 114042. [Google Scholar] [CrossRef]
- Sunny, M.S.H.; Dipta, D.R.; Hossain, S.; Faruque, H.M.R.; Hossain, E. Design of a convolutional Neural Network Based Smart Waste Disposal System. In Proceedings of the 1st International Conference on Advances in Science, Engineering and Robotics Technology, Dhaka, Bangladesh, 3–5 May 2019; pp. 2–6. [Google Scholar] [CrossRef]
- Chazhoor, A.A.P.; Ho, E.S.L.; Gao, B.; Woo, W.L. Deep transfer learning benchmark for plastic waste classification. Intell. Robot. 2022, 2, 1–19. [Google Scholar] [CrossRef]
- Lanorte, A.; De Santis, F.; Nolè, G.; Blanco, I.; Loisi, R.V.; Schettini, E.; Vox, G. Agricultural plastic waste spatial estimation by Landsat 8 satellite images. Comput. Electron. Agric. 2017, 141, 35–45. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Lin, R.; Zhang, Z.; Zhang, B. Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sens. 2021, 13, 2820. [Google Scholar] [CrossRef]
- Gruber, F.; Grählert, W.; Wollmann, P.; Kaskel, S. Classification of black plastics waste using fluorescence imaging and machine learning. Recycling 2019, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Jude, A.B.; Singh, D.; Islam, S.; Jameel, M.; Srivastava, S.; Prabha, B.; Kshirsagar, P.R. An Artificial Intelligence Based Predictive Approach for Smart Waste Management. Wirel. Pers. Commun. 2021, 1–21. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Mustapa, S.I.; Kanthasamy, R.; Zwawi, M.; Cheng, C.K. Modeling the prediction of hydrogen production by co-gasification of plastic and rubber wastes using machine learning algorithms. Int. J. Energy Res. 2021, 45, 9580–9594. [Google Scholar] [CrossRef]
- Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [Google Scholar] [CrossRef]
- Navarro, I.; Matía, F. An Introduction to Swarm Robotics. ISRN Robot. 2012, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tropea, M.; Santamaria, A.F.; Potrino, G.; Rango, F. De Bio-Inspired Recruiting Protocol for FANET in Precision Agriculture Domains: Pheromone Parameters Tuning. In Proceedings of the IFIP Wireless Days, Manchester, UK, 24–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M.; Intell, S. Swarm Intell Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 2013, 7, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Carbone, C.; Garibaldi, O.; Kurt, Z. Swarm Robotics as a Solution to Crops Inspection for Precision Agriculture. KnE Eng. 2018, 3, 552–562. [Google Scholar] [CrossRef]
- Tran Ngoc, N.H.; Jefferson, N.K.; Raspe, P.H. Agricultural Swarm Robotics with Distributed Sensing. Undergraduate Project Report; Worcester Polytechnic Institute: Worcester, MA, USA, 2017. [Google Scholar]
- Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm Robotic Behaviors and Current Applications. Front. Robot. AI 2020, 7, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrás, J. Swarm of Tiny Robots Could Help Eliminate Pesticides. Clean Tech. 2020. Available online: https://cleantechnica.com/2020/08/07/swarm-of-tiny-robots-could-help-eliminate-pesticides/ (accessed on 1 October 2022).
- European Commission. Agricultural-Robotics Technology Company Enabling a Modular Swarm of Autonomous Drones for Spraying. 2022. Available online: https://cordis.europa.eu/project/id/836621 (accessed on 1 October 2022).
- Gul, F.; Rahiman, W.; Alhady, S.S.N.; Ali, A.; Mir, I.; Jalil, A. Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient Intell. Humaniz. Comput. 2020, 12, 7873–7890. [Google Scholar] [CrossRef]
- Swarm Robotics for Agricultural Applications. SAGA Exp. 2022. Available online: https://echord.eu/saga.html (accessed on 1 October 2022).
- Arif, M.; Alghamdi, K.K.; Sahel, S.A.; Alosaimi, S.O.; Alsahaft, M.E. Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review. J. Robot. Autom. 2021, 5, 212–226. [Google Scholar] [CrossRef]
- Aspragathos, N.; Dogkas, E.; Konstantinidis, P.; Koutmos, P.; Lamprinou, N.; Moulianitis, V.C.; Paterakis, G.; Psarakis, E.Ζ.; Sartinas, E.; Souflas, K.; et al. From Pillars to AI Technology-Based Forest Fire Protection Systems. In Intelligent System and Computing; Intechopen: London, UK, 2019; p. 13. [Google Scholar]
- Park, J.H.; Lee, S.; Yun, S.; Kim, H.; Kim, W.T. Dependable fire detection system with multifunctional artificial intelligence framework. Sensors 2019, 19, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.M.; Seibel, A. Recycling-oriented fabrication of soft robots. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022; pp. 571–576. [Google Scholar] [CrossRef]
- Pahl, C. How Machine Learning and Robotics Are Solving the Plastic Sorting Crisis. 2020. Available online: https://datafloq.com/read/using-ai-robotics-solve-plastic-sorting-crisis/ (accessed on 1 October 2022).
- Rojas, J. Plastic waste is exponentially filling our oceans, but where are the robots? In Proceedings of the 2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Malambe, Sri Lanka, 6–8 December 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rabold, E. Robotics and Remote Systems. 1995. Available online: https://rrsd.ans.org/ (accessed on 1 October 2022).
- Ward, C. Overview of the DOE Waste Facilities Operations Robotic Technology Development Program. 1992. Available online: https://www.osti.gov/biblio/5046250 (accessed on 1 October 2022).
- Barolli, L.; Yim, K.; Chen, H.-C. Advances in Automation and Robotics Research: Proceedings of the 3rd Latin American Congress on Automation and Robotics; Moreno, H.A., Carrera, I.G., Ramírez-Mendoza, R.A., Baca, J., Banfield, I.A., Eds.; Springer: Cham, Switzerland, 2021; Volume 2, pp. 1–45. [Google Scholar]
- Anitha, R.; Maruthi, R.; Sudha, S. Automated Segregation and Microbial Degradation of Plastic Wastes: A Greener Solution to Waste Management Problems. Glob. Transit. Proc. 2022, 3, 100–103. [Google Scholar] [CrossRef]
- Andeobu, L.; Wibowo, S.; Grandhi, S. Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review. Sci. Total Environ. 2022, 834, 155389. [Google Scholar] [CrossRef]
- Lubongo, C.; Alexandridis, P. Assessment of Performance and Challenges in Use of Commercial Automated Sorting Technology for Plastic Waste. Recycling 2022, 7, 11. [Google Scholar] [CrossRef]
- Aazam, M.; St-Hilaire, M.; Lung, C.H.; Lambadaris, I. Cloud-based smart waste management for smart cities. In Proceedings of the IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Toronto, ON, Canada, 23–25 October 2016; pp. 188–193. [Google Scholar] [CrossRef]
- Jain, A.; Bagherwal, R. Design and implementation of a smart solid waste monitoring and collection system based on Internet of Things. In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017. [Google Scholar] [CrossRef]
- Ziouzios, D.; Tsiktsiris, D.; Baras, N.; Dasygenis, M. A Distributed Architecture for Smart Recycling Using Machine Learning. Future Internet 2020, 12, 141. [Google Scholar] [CrossRef]
- Georgali, P.Z.M.; Afxentiou, N.; Kylili, A.; Fokaides, P.A. Definition of optimal agricultural plastic waste collection centers with advanced spatial analysis tools. Clean. Eng. Technol. 2021, 5, 100326. [Google Scholar] [CrossRef]
- Cillis, G.; Statuto, D.; Schettini, E.; Vox, G.; Picuno, P. Implementing a GIS-Based Digital Atlas of Agricultural Plastics to Reduce Their Environmental Footprint. Part I: A Deductive Approach. Appl. Sci. 2022, 12, 1330. [Google Scholar] [CrossRef]
- Liu, L.W.; Ma, X.; Wang, Y.M.; Lu, C.T.; Lin, W.S. Using artificial intelligence algorithms to predict rice (Oryza sativa L.) growth rate for precision agriculture. Comput. Electron. Agric. 2021, 187, 106286. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Aernouts, M.; De Meyer, M.; Weyn, M.; Berkvens, R. Leveraging LoRaWAN technology for precision agriculture in greenhouses. Sensors 2020, 20, 1827. [Google Scholar] [CrossRef] [PubMed]
Criteria | Requirement |
---|---|
Inclusion | Research publications that focused on enzyme-embedded biodegradable agricultural plastics and microbial degradation to achieve better sustainability |
Articles that investigated the adoption of enzyme-embedded and microbial degradation technologies in agriculture. | |
Research on polycaprolactone/Amano lipase (PCL/AL) composite films using microorganisms, lipase enzyme, proteinase K-derived Tritirachium album enzyme-embedded PLA films, and the effectiveness of the solutions in high-density and low-density polymers | |
Exclusion | Studies that did not focus on enzyme-embedded biodegradable agricultural plastics and microbial degradation to achieve better sustainability |
Research that was not relevant to the countries and regions of interest (Europe, Middle East, Asia, Africa, and the US) | |
Duplicate articles and gray literature |
Material (Commercial Polymer Brands) | Temperature | Degradation Degree | Time and Temperature |
---|---|---|---|
PBAT/PLA | 28 °C | 94% | 181 Days (28 °C) |
PHB | 25 °C | 90.2% | 120 Days (25 °C) |
PBSe | 91.7% | 120 Days (25 °C) | |
PBSeT | 76.7% | 318 Days (25 °C) | |
Cellulose paper | 92.5% | 318 Days (25 °C) | |
PHBV | 25 °C | 65–90% | 23.4 Weeks |
Starch | >70% | 8.4 Weeks | |
Cellulose | >70% | 13.8 Weeks | |
PHA | 20 °C | 69.2% | 660 Days |
Copolyester/starch | 55.1% | ||
Cellulose-paper | 74.2% | ||
PLA | 20 °C | <1% | 186 Days |
Cellulose | 76% |
Specific Application of the Agricultural Plastic | Type of Plastic | The Estimated Cost of Waste Management |
---|---|---|
Films for mulching, flat covers, small tunnels, and greenhouses | PP and HDPE | 70 to 100 Euros/ton |
Anti-hail and insect-proof protective nets | HDPE | 200 to 00 Euros/ton |
Pipes and tubes for irrigation | LDPE | 100 to 200 Euros/ton |
Horticultural twines | PP | 100 to 200 Euros/ton |
Silage and stretch films | LDPE | 100 to 200 Euros/ton |
Biodegradable plastic film for mulching | PLA, starch, polybutylene adipate terephthalate |
Type of | Mulching | Scenarios | Incomes | Costs | Net Margin | % with Respect |
---|---|---|---|---|---|---|
Mulching | Materials | to PE | ||||
Non-degradable | No waste management | 21,550 | 8675 | 12,874 | - | |
PE | Landfill | 21,550 | 8685 | 12,865 | 100 | |
Film | ||||||
Recycling | 21,550 | 8691 | 12,859 | 100 | ||
Mater-Bifi | No subsidies | 25,579 | 9259 | 16,320 | 127 | |
With subsidies | 25,987 | 16,728 | 130 | |||
Sphere | No subsidies | 22,601 | 8867 | 13,734 | 107 | |
Biodegradable | With subsidies | 22,871 | 14,004 | 109 | ||
Films | Bioflexfi | No subsidies | 21,374 | 9026 | 12,349 | 96 |
With subsidies | 21,700 | 12,675 | 98 | |||
Ecoviofi | No subsidies | 20,411 | 8600 | 11,811 | 92 | |
With subsidies | 20,588 | 11,988 | 93 | |||
Mimgreenfi | No subsidies | 23,389 | 9215 | 14,174 | 110 | |
Paper | Arrosifi69 | No subsidies | 22,163 | 9153 | 13,010 | 101 |
ArrosifiG 1a | No subsidies | 23,564 | 9487 | 14,078 | 109 | |
Arrosifi240 | No subsidies | 24,966 | 9153 | 15,813 | 123 |
Municipality | Greenhouse for Tomatoes | Other Greenhouse Vegetables | Vegetables in Tunnels | Total Categories | ||||
---|---|---|---|---|---|---|---|---|
Ha | % | Ha | % | Ha | % | Ha | % | |
Bernalda | 3 | 10 | 24 | 5 | 8 | 4 | 35 | 5 |
Montalbano jonico | 0 | 0 | 4 | 1 | 2 | 1 | 6 | 1 |
Pisticci | 0 | 0 | 43 | 9 | 22 | 10 | 65 | 9 |
Policoro | 2 | 7 | 152 | 33 | 35 | 16 | 188 | 27 |
Nova siri | 0 | 0 | 6 | 1 | 8 | 3 | 14 | 2 |
Rotondella | 0 | 0 | 4 | 1 | 3 | 1 | 7 | 1 |
Scanzano jonico | 1 | 4 | 169 | 36 | 84 | 38 | 254 | 36 |
Tursi | 2 | 6 | 4 | 1 | 52 | 24 | 57 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maraveas, C.; Kotzabasaki, M.I.; Bartzanas, T. Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics. AgriEngineering 2023, 5, 85-111. https://doi.org/10.3390/agriengineering5010006
Maraveas C, Kotzabasaki MI, Bartzanas T. Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics. AgriEngineering. 2023; 5(1):85-111. https://doi.org/10.3390/agriengineering5010006
Chicago/Turabian StyleMaraveas, Chrysanthos, Marianna I. Kotzabasaki, and Thomas Bartzanas. 2023. "Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics" AgriEngineering 5, no. 1: 85-111. https://doi.org/10.3390/agriengineering5010006
APA StyleMaraveas, C., Kotzabasaki, M. I., & Bartzanas, T. (2023). Intelligent Technologies, Enzyme-Embedded and Microbial Degradation of Agricultural Plastics. AgriEngineering, 5(1), 85-111. https://doi.org/10.3390/agriengineering5010006