Influence of Calcium on the Development of Corn Plants Grown in Hydroponics
Abstract
:1. Introduction
2. Materials and Methods
- The plant height (with a 5 m metallic measuring tape);
- Number of leaves per plant (counting leaves with sheaths);
- Plant visual diagnosis (as monitoring nutrient sufficiency through foliar diagnosis is a useful tool for maximizing fertilizer efficiency).
- The mean stem diameter (300 mm Vonder metal caliper).
- Shoot and root dry weights, where the roots and shoots were collected, separated, and packed into paper bags. Afterward, they were left to dry in a forced-air circulation oven at 70 °C until reaching constant weight.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA—United States Department of Agriculture. World Agricultural Production. Circular Series WAP 1–23 January 2023. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 12 January 2023).
- SNA—Sociedade Nacional de Agricultura. Brasil Poderá ser Líder Mundial de Exportação de Milho e Algodão até 2030. Campus Educacional e Ambiental da SNA. Rio de Janeiro, RJ. 2023. Available online: https://www.sna.agr.br/brasil-podera-ser-lider-mundial-de-exportacao-de-milho-e-algodao-ate-2030/ (accessed on 12 January 2023).
- Sousa, G.G.; Rodrigues, V.D.S.; Silva Sales, J.R.; Cavalcante, F.; Silva, G.L.; Leite, K.N. Estresse salino e cobertura vegetal morta na cultura do milho. Rev. Bras. Agric. Irrig. 2018, 12, 3078–3089. [Google Scholar] [CrossRef]
- Souza, C.C.M.; Saraiva, J.S.; Santos, M.A.S.; Rebello, F.K. Concentração espacial, fontes de crescimento e instabilidade da renda da cultura do milho no Estado do Pará. Res. Soc. Dev. 2020, 9, e566985733. [Google Scholar] [CrossRef]
- Ratke, R.F.; Zuffo, A.M.; Steiner, F.; Aguilera, J.G.; de Godoy, M.L.; Gava, R.; de Oliveira, J.T.; Filho, T.A.d.S.; Viana, P.R.N.; Ratke, L.P.T. Can Soil Moisture and Crop Production Be Influenced by Different Cropping Systems? AgriEngineering 2023, 5, 112–126. [Google Scholar] [CrossRef]
- Zen, H.D.; Brandão, J.B. Competitividade da produção hidropônica de hortaliças folhosas no Brasil. Rev. De Política Agrícola 2019, 28, 115. Available online: https://seer.sede.embrapa.br/index.php/RPA/article/view/1381/pdf (accessed on 12 January 2023).
- Poli, M.A.; Legarda, E.C.; Lorenzo, M.A.; Pinheiro, I.; Martins, M.A.; Seiffert, W.Q.; Nascimento Vieira, F. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture 2019, 511, 734274. [Google Scholar] [CrossRef]
- Brito, R.S.; Batista, J.F.; do Vale Moreira, J.G.; Moraes, K.N.O.; Silva, S.O. Rochagem na agricultuta: Importância e vantagens para adubação suplementar. S. Am. J. Basic Educ. Tech. Technol. 2019, 6, 528–540. Available online: https://revistas.ufac.br/index.php/SAJEBTT/article/view/2331/1585 (accessed on 12 January 2023).
- Pramanick, B.; Brahmachari, K.; Ghosh, D.; Bera, P.S. Influence of foliar application seaweed (Kappaphycus and Gracilaria) saps in rice (Oryza sativa)-potato (Solanum tuberosum)-blackgram (Vigna mungo). Indian J. Agron. 2018, 63, 8–13. Available online: https://agris.fao.org/agris-search/search.do?recordID=US202100027597 (accessed on 12 January 2023).
- Michalovicz, L.; Müller, M.M.L.; Tormena, C.A.; Dick, W.A.; Vicensi, M.; Meert, L. Soil chemical attributes, nutrient uptake and yield of no-till crops as affected by phosphogypsum doses and parceling in southern Brazil. Arch. Agron. Soil Sci. 2019, 65, 385–399. [Google Scholar] [CrossRef]
- Mazraei, M.S.; Chehrazi, M.; Khaleghi, E. The effect of calcium nanochelate on morphological, physiological, biochemical characteristics and vase life of three cultivars of Gerbera under hydroponic system. J. Plant Prod. (Agron. Breed. Hortic.) 2020, 43, 53–66. [Google Scholar] [CrossRef]
- Ning, D.; Liang, Y.; Liu, Z.; Xiao, J.; Duan, A. Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE 2016, 11, e0168163. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.B.; Bitencourt, L.P.; de Faria Theodoro, G.; de Almeida Curcio, U.; de Assis Theodoro, W.; Arruda, C.O.C.B. Influence of calcium silicate on soil fertility and corn morphology. J. Agric. Stud. 2020, 8, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Gustiar, F.; Munandar, M.; Ningsih, S.W.; Ammar, M. Biofortification of calcium on mustard (Brassica juncea L.) and lettuce (Lactuca sativa) cultivated in floating hydroponic system. Bul. Agroteknologi 2020, 1, 27–36. [Google Scholar] [CrossRef]
- Alikhani, T.T.; Tabatabaei, S.J.; Torkashvand, A.M.; Khalighi, A.; Talei, D. Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. J. Plant Nutr. 2021, 44, 1039–1053. [Google Scholar] [CrossRef]
- Tuan, V.N.; Dinh, T.D.; Zhang, W.; Khattak, A.M.; Le, A.T.; Saeed, I.A.; Wang, M. A smart diagnostic tool based on deep kernel learning for on-site determination of phosphate, calcium, and magnesium concentration in a hydroponic system. RSC Adv. 2021, 11, 11177–11191. [Google Scholar] [CrossRef] [PubMed]
- Silva Pinheiro, L.; Silva, R.C.; Conceição Vieira, R.; Aguiar, R.O.; do Nascimento, M.R.; Vieira, M.M.; Silva, P.A. Análise de trilha dos atributos físicos de milho (Zea mays L.) em sistema de cultivo convencional. Res. Soc. Dev. 2021, 10, e8010110832. [Google Scholar] [CrossRef]
- INMET–Instituto Nacional de Meteorologia—Informativo Meteorológico Nº 05/2023—Ministério da Agricultura e Pecuária. 2023. Available online: https://portal.inmet.gov.br/noticias/informativo-meteorol%C3%B3gico-n%C2%BA-05-2023 (accessed on 12 January 2023).
- Hoagland, D.R.; Arnon, D.I. Growing plants without soil by the water-culture method. In Circular—California Agricultural Experiment Station; CABI: Wallingford, UK, 1938; p. 16. Available online: https://www.cabdirect.org/cabdirect/abstract/19381900944 (accessed on 12 January 2023).
- Silva, S.A.S.D.; Santos, M.M.D.L.S.; Silva, G.R.D.; Silva Júnior, M.L.D.; Ohashi, O.S.; Ruivo, M.D.L.P. Efeito do cálcio no controle da Hypsipila grandella em mudas de mogno cultivadas em hidroponia. Acta Amaz. 2009, 39, 273–278. [Google Scholar] [CrossRef]
- Epstein, E.; Bloom, A.J. Nutrição Mineral de Plantas: Princípios e Perspectivas, 2nd ed.; Planta: Londrina, Brazil, 2006; p. 401. ISBN 9788599144039. [Google Scholar]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs: Sisvar. Braz. J. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.F.S.; Santos, S.R.D.; Kondo, M.K.; Araújo, E.D.; Oliveira, P.M.D. Fertirrigação do milho com água residuária sanitária tratada: Crescimento e produção. Eng. Sanitária E Ambient. 2018, 23, 833–839. [Google Scholar] [CrossRef]
- Macedo, L.A.; Fernandes, A.C.; Sardinha, L.T.; França, A.C.; Machado, C.M.M.; Ferreira, B.O.; Sousa Cruz, R. Crescimento inicial de milho submetido a diferentes manejos de adubação. Braz. J. Dev. 2020, 6, 5880–5893. [Google Scholar] [CrossRef]
- Baesso, M.M.; Aprilanti, T.M.G.; Modolo, A.J.; Rossi, F. Artificial vision for the nutritional diagnosis of corn cultivated with calcium and magnesium silicate in weight doses and high dilutions. Rev. Bras. Eng. Biossistemas 2020, 14, 36–47. Available online: http://seer.tupa.unesp.br/index.php/BIOENG/article/view/857/445 (accessed on 12 January 2023).
- Picazevicz, A.A.; Kusdra, J.F.; Moreno, A.D.L. Crescimento do milho em resposta a Azospirillum brasilense, Rhizobium tropici, molibdênio e nitrogênio. Rev. Bras. Eng. Agrícola Ambient. 2017, 21, 623–627. [Google Scholar] [CrossRef]
- Gomes, L.L.; Buso, W.H.D.; Lima, J.B.; Matos, H.G.; Junior, L.A.L. Evaluation of corn hybrids performance in two locations of Goiás. Rev. Agric. Neotrop. 2019, 6, 8–16. Available online: https://periodicosonline.uems.br/index.php/agrineo/article/view/2362/2741 (accessed on 12 January 2023). [CrossRef] [Green Version]
- Figueiredo, E.; Ascencio, F.; Savio, G.M. Características agronômicas de três cultivares de milho sob quatro populações de plantas. Rev. Científica Eletrônica Agron. 2008, 7, 1–6. Available online: http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/tcPXFoE6i7NgE4L_2013-5-3-15-26-46.pdf (accessed on 12 January 2023).
- Pramanick, B.; Brahmachari, K.; Ghosh, A.; Zodape, S.T. Foliar nutrient management through Kappaphycus and Gracilaria saps in rice-potato-green gram crop sequence. J. Sci. Ind. Res. 2014, 73, 613–617. Available online: http://nopr.niscair.res.in/bitstream/123456789/29346/1/JSIR%2073(9)%20613-617.pdf (accessed on 12 January 2023).
- Oliveira, R.M.; Oliveira, R.A.; Castro, T.R.; Botelho, M.E.; Rodrigues, R.D.; Plazas, G.M.R.; Oliveira, J. Analise de trilha do teor de fósforo nos diferentes constituintes do milho irrigado. Res. Soc. Dev. 2022, 11, e16811225568. [Google Scholar] [CrossRef]
- Baup, F.; Ameline, M.; Fieuzal, R.; Frappart, F.; Corgne, S.; Berthoumieu, J.F. Temporal evolution of corn mass production based on agro-meteorological modelling controlled by satellite optical and SAR images. Remote Sens. 2019, 11, 1978. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, K.S.; de Mello Prado, R.; Farias Guedes, V.H. Leaf spraying of manganese with silicon addition is agronomically viable for corn and sorghum plants. J. Soil Sci. Plant Nutr. 2020, 20, 872–880. [Google Scholar] [CrossRef]
- Sihotang, M.C.; Sipayung, R. Application Two Different Calcium on Sweet Corn Growth (Zea mays saccharata Strutt.) in Ultisol. J. Pertan. Trop. 2021, 8, 129–134. [Google Scholar] [CrossRef]
- Shareef, R.S.; Mamat, A.S.; Al-Shaheen, M.R. The Effect of Soil PH, High-Calcium Compost and Cadmium on Some of Growth Characters in Corn (Zea mays L.). ARC J. Pharm. Sci. 2019, 5, 16–27. [Google Scholar] [CrossRef]
- Kim, N.; Behnke, G.D.; Villamil, M.B. Characterization of Mollisols after long-term N fertilization at successive rates in continuous and rotated corn systems. Agronomy 2022, 12, 625. [Google Scholar] [CrossRef]
- Kim, N.; Riggins, C.W.; Zabaloy, M.C.; Allegrini, M.; Rodriguez-Zas, S.L.; Villamil, M.B. High-Resolution Indicators of Soil Microbial Responses to N Fertilization and Cover Cropping in Corn Monocultures. Agronomy 2022, 12, 954. [Google Scholar] [CrossRef]
- Romero-Cortes, T.; Tamayo-Rivera, L.; Morales-Ovando, M.A.; Aparicio Burgos, J.E.; Pérez España, V.H.; Peralta-Gil, M.; Cuervo-Parra, J.A. Growth and yield of purple kculli corn plants under different fertilization schemes. J. Fungi 2022, 8, 433. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhao, H.; You, Y.; Wu, R.; Liu, G.; Sun, Z.; Zhang, Y. Effects of intercropping, nitrogen fertilization and corn plant density on yield, crude protein accumulation and ensiling characteristics of silage corn interseeded into alfalfa stand. Agriculture 2022, 12, 357. [Google Scholar] [CrossRef]
- Rathor, D.; Verma, S.; Solanki, H. A review on effect of potassium and calcium on different parameters on plants under hydroponic condition. EPRA Int. J. Res. Dev. 2021, 6, 87–91. [Google Scholar] [CrossRef]
Stock Solution | Concentration | Treatment (mL·L−1) | ||
---|---|---|---|---|
Complete Solution (200 mg Ca L−1) | 0 mg Ca L−1 | 600 mg Ca L−1 | ||
NaNO3 | 1 M | - | 10 | - |
CaCl2 | 1 M | - | - | 10 |
KH2BY4 | 1 M | 1 | 1 | 1 |
KNO3 | 1 M | 5 | 5 | 5 |
Ca(NO3)2·4H2O | 1 M | 5 | - | 5 |
MgSO4·7H2O | 1 M | 2 | 2 | 2 |
Micronutrients * | 1 M | 1 | 1 | 1 |
Sol. Fe-EDTA ** | - | 1 | 1 | 1 |
Parameter | Treatment | ||
---|---|---|---|
Ca Excess | Ca Omission | Nutritient Solution | |
Leaf number (unit) | 5.67 ± 0.58 a | 6.67 ± 3.21 a | 6.67 ± 0.58 a |
Stem diameter (cm) | 1.67 ± 0.83 a | 2.20 ± 0.89 a | 2.30 ± 0.92 a |
Shoot dry matter (g) | 21.38 ± 0.77 a | 15.81 ± 0.23 b | 22.22 ± 1.29 a |
Root dry matter (g) | 9.78 ± 0.24 b | 4.66 ± 0.30 c | 20.90 ± 0.69 a |
Cultivation (Days) | Plant Height (cm) | ||
---|---|---|---|
Ca Excess | Ca Omission | Nutritient Solution | |
1 | 1.67 ± 0.83 a | 2.20 ± 0.89 a | 2.30 ± 0.92 a |
8 | 9.57 ± 2.10 a | 10.60 ± 0.80 a | 10.27 ± 1.34 a |
16 | 16.13 ± 2.14 a | 16.53 ± 0.31 a | 16.87 ± 0.70 a |
24 | 25.00 ± 2.67 a | 22.3 ± 3.39 a | 23.37 ± 1.24 a |
32 | 33.17 ± 0.76 a | 32.00 ± 11.70 a | 32.00 ± 0.87 a |
40 | 46.17 ± 3.92 a | 38.67 ± 20.77 a | 45.70 ± 2.89 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Moraes Gatti, V.C.; da Silva Barata, H.; Silva, V.F.A.; da Cunha, F.F.; de Oliveira, R.A.; de Oliveira, J.T.; Silva, P.A. Influence of Calcium on the Development of Corn Plants Grown in Hydroponics. AgriEngineering 2023, 5, 623-630. https://doi.org/10.3390/agriengineering5010039
do Moraes Gatti VC, da Silva Barata H, Silva VFA, da Cunha FF, de Oliveira RA, de Oliveira JT, Silva PA. Influence of Calcium on the Development of Corn Plants Grown in Hydroponics. AgriEngineering. 2023; 5(1):623-630. https://doi.org/10.3390/agriengineering5010039
Chicago/Turabian Styledo Moraes Gatti, Victória Carolline, Henrique da Silva Barata, Vicente Filho Alves Silva, Fernando França da Cunha, Rubens Alves de Oliveira, Job Teixeira de Oliveira, and Priscilla Andrade Silva. 2023. "Influence of Calcium on the Development of Corn Plants Grown in Hydroponics" AgriEngineering 5, no. 1: 623-630. https://doi.org/10.3390/agriengineering5010039
APA Styledo Moraes Gatti, V. C., da Silva Barata, H., Silva, V. F. A., da Cunha, F. F., de Oliveira, R. A., de Oliveira, J. T., & Silva, P. A. (2023). Influence of Calcium on the Development of Corn Plants Grown in Hydroponics. AgriEngineering, 5(1), 623-630. https://doi.org/10.3390/agriengineering5010039