Garlic Field Classification Using Machine Learning and Statistic Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Research Steps
2.3. Data Preprocessing
2.4. K-Nearest Neighbor
- Prepare input: training set, class of training data, testing set.
- Calculate the distance between each object in the testing set to each object in the training set.
- Determine k training objects that are nearest to the testing objects.
- Define the label that frequently occurred.
- Assign the testing object to the class with the highest frequency.
- (1)
- param_algorithm: algorithm used to compute the nearest neighbors;
- (2)
- param_leaf_size: leaf size passed to BallTree or KDTree;
- (3)
- param_metric: Metric for distance computation. The default is “minkowski”, which results in the standard Euclidean distance when power (p) = 2;
- (4)
- param_n_neighbor: number of neighbors;
- (5)
- param_p: power parameter for the Minkowski metric;
- (6)
- param_weights: weight function used in prediction.
- (1)
- param_n_neighbor: number of neighbors;
- (2)
- param_p: power parameter for the Minkowski metric.
2.5. Maximum Likelihood Classification
3. Results
3.1. Classification Using k-NN
3.2. Evaluation of Classification Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Indonesia and Directorate General of Horticulture. Garlic Productivity by Province, 2015–2019 (In Bahasa). Statistics Indonesia and Directorate General of Horticulture. Available online: https://www.pertanian.go.id/home/index.php?show=repo&fileNum=339 (accessed on 28 August 2022).
- Ministry of Agriculture Indonesia. Regulation of the Minister of Agriculture Indonesia Number 38 Year 2017 Concerning Recommendations for the Import of Horticultural Products. Ministry of Agriculture Indonesia. Available online: https://peraturan.bpk.go.id/Home/Download/153591/PermentanNomor38Tahun2017.pdf (accessed on 23 September 2022).
- Zulkarnain. Tropical Vegetable Cultivation; Bumi Aksara: Jakarta, Indonesia, 2013. (In Bahasa) [Google Scholar]
- Statistics Indonesia. Production of Vegetable Plants 2012 (In Bahasa). Statistics Indonesia. Available online: https://www.bps.go.id/indicator/55/61/10/produksi-tanaman-sayuran.html (accessed on 12 December 2022).
- Mayanda, D.P.; Adi, I.G.P.R.; Kusmiyarti, T.B. Evaluation of Land Suitability of Horticultural Crops in Sembalun Sub-district, East Lombok Regency, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 313, 012018. [Google Scholar] [CrossRef] [Green Version]
- Muslim, R.Q.; Mulyani, A. Land characteristics and suitability for development of garlic in East Lombok Regency, West Nusa Tenggara Province. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012079. [Google Scholar] [CrossRef]
- Mahmudah, N.; June, T. Impron Adaptive Garlic Farming on Climate Change and Variability in Lombok. Agromet 2021, 35, 116–124. [Google Scholar] [CrossRef]
- Agmalaro, M.A.; Sitanggang, I.S.; Waskito, M.L. Sentinel 1 Classification for Garlic Land Identification using Support Vector Machine. In Proceedings of the 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 3–5 August 2021; pp. 440–444. [Google Scholar] [CrossRef]
- Komaraasih, R.I.; Sitanggang, I.S.; Agmalaro, M.A. Sentinel-1A Image Classification for Identification of Garlic Plants using a Decision Tree Algorithm. In Proceedings of the 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), Bogor, Indonesia, 16–17 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sitanggang, I.S.; Agmalaro, M.A.; D’Alene, A.A.C.; Annisa. Ensemble Learning on Sentinel-1A Imagery for Garlic Field Classification. In Proceedings of the 2022 International Conference of Informatics, Multimedia, Cyber, and Information System (ICIMCIS), Jakarta, Indonesia, 16–17 November 2022. [Google Scholar]
- Chai, Z.; Zhang, H.; Xu, X.; Zhang, L. Garlic Mapping for Sentinel-2 Time-Series Data Using a Random Forest Classifier. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7224–7227. [Google Scholar] [CrossRef]
- Wu, S.; Lu, H.; Guan, H.; Chen, Y.; Qiao, D.; Deng, L. Optimal Bands Combination Selection for Extracting Garlic Planting Area with Multi-Temporal Sentinel-2 Imagery. Sensors 2021, 21, 5556. [Google Scholar] [CrossRef] [PubMed]
- Maharani, E.; Sitanggang, I.S.; Agmalaro, M.A. Garlic Growth Phase Classification using Support Vector Machine and Sentinel-2A Imagery. In Proceedings of the 2022 6th International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 28–29 September 2022; pp. 72–77. [Google Scholar] [CrossRef]
- Tian, H.; Pei, J.; Huang, J.; Li, X.; Wang, J.; Zhou, B.; Qin, Y.; Wang, L. Garlic and Winter Wheat Identification Based on Active and Passive Satellite Imagery and the Google Earth Engine in Northern China. Remote Sens. 2020, 12, 3539. [Google Scholar] [CrossRef]
- Nurkholis, A.; Sitanggang, I.S.; Annisa, A.; Sobir, S. Spatial decision tree model for garlic land suitability evaluation. IAES Int. J. Artif. Intell. IJ-AI 2021, 10, 666–675. [Google Scholar] [CrossRef]
- Felegari, S.; Sharifi, A.; Moravej, K.; Amin, M.; Golchin, A.; Muzirafuti, A.; Tariq, A.; Zhao, N. Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping. Appl. Sci. 2021, 11, 10104. [Google Scholar] [CrossRef]
- Moola, W.S.; Bijker, W.; Belgiu, M.; Li, M. Vegetable mapping using fuzzy classification of Dynamic Time Warping distances from time series of Sentinel-1A images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102405. [Google Scholar] [CrossRef]
- The European Space Agency. Sentinel-1 SAR Overview: Geophysical Measurements. The European Space Agency. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/product-overview/geophysical-measurements (accessed on 28 December 2022).
- Ministry of Agriculture. Decree of the Minister of Agriculture No. 472/Kpts/RC.040/6/2018 Concerning the Location of National Agricultural Areas. Ministry of Agriculture. 2018. Available online: https://peraturan.bpk.go.id/Home/Details/162567/kepmentan-no-472kptsrc04062018-tahun-2018 (accessed on 26 December 2022).
- The European Space Agency. User Guides Sentinel-1 SAR: Acquisition Modes. The European Space Agency. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes (accessed on 28 December 2022).
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Presented at the IJCAI’95. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 2, pp. 1137–1143. [Google Scholar]
- Abdikan, S.; Sanli, F.B.; Ustuner, M.; Calò, F. Land Cover Mapping using Sentinel-1 SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Siji, G.C.G.; Sumathi, B. Grid Search Tuning of Hyperparameters in Random Forest Classifier for Customer Feedback Sentiment Prediction. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 174. [Google Scholar] [CrossRef]
- Scikit-learn Developers. Sklearn.Neighbors. KNeighborsClassifier. Scikit-Learn Developers. 2022. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed on 28 December 2022).
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Elsevier: Burlington, NJ, USA, 2011; ISBN 978-0-12-374856-0. [Google Scholar] [CrossRef] [Green Version]
- ESA Copernicus. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/ (accessed on 7 November 2020).
- SNAP—ESA Science Toolbox Exploitation Platrom (STEP). European Space Agency. 2017. Available online: http://step.esa.int/main/toolboxes/snap/ (accessed on 7 November 2020).
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, P.; Delany, S.J. k-Nearest Neighbour Classifiers—A Tutorial. ACM Comput. Surv. 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Jiang, J. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations. Comput. Intell. Neurosci. 2015, 2015, 423581. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Ahmad, A.; Quegan, S. Analysis of Maximum Likelihood Classification on Multispectral Data. Appl. Math. Sci. 2012, 6, 6425–6436. [Google Scholar]
- Jensen, J.R.; Lulla, K. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Worms, J.; Touati, S. Parametric and Non-Parametric Statistics for Program Performance Analysis and Comparison. Universite Nice Sophia Antipolis; Universite Versailles Saint Quentin en Yvelines; Laboratoire de Mathematiques de Versailles, Research Report. 2016. Available online: https://hal.inria.fr/hal-01286112v3/document (accessed on 7 November 2020).
- Komaraasih, R.I.; Sitanggang, I.S.; Annisa, A.; Agmalaro, M.A. Sentinel-1A image classification for identification of garlic plants using decision tree and convolutional neural network. IAES Int. J. Artif. Intell. IJ-AI 2022, 11, 1323–1332. [Google Scholar] [CrossRef]
Attribute | Specification |
---|---|
Acquisition time | July and November 2019 |
Acquisition orbit | Ascending |
Imaging mode | Interferometry wide swath (IW) |
Imaging frequency | Topsar Band-C center frequency 5.405Ghz |
Polarization | VV-VH |
Data product | 20–45° |
Resolution mode | Level-1 GRD |
Scenario | Description |
---|---|
1 | VV, VH |
2 | VV, VH, VV-VH |
3 | VV, VH, VV-VH, (VV/VH), (VV+VH)/2 |
Predicted Class | |||
---|---|---|---|
Yes | No | ||
Actual class | Yes | True positive (TP) | False negative (FN) |
No | False positive (FP) | True negative (TN) |
Dataset | Garlic Class Sample | Non-Garlic Class Sample |
---|---|---|
A | 4200-pixel of the image on 13 July 2019 | 4200-pixel of the image on 10 November 2019 |
B | 4200-pixel of the image on 25 July 2019 | 4200-pixel of the image on 22 November 2019 |
Class | Band | Mean | Variance | Covariance |
---|---|---|---|---|
Garlic | VV | −8.3774 | 1.5948 | 0.4375 |
VH | −14.3080 | 2.0871 | ||
Non-garlic | VV | −5.4092 | 19.0352 | 13.6106 |
VH | −12.2298 | 13.6658 |
Class | Band | Mean | Variance | Covariance |
---|---|---|---|---|
Garlic | VV | −8.5771 | 1.9791 | 0.5216 |
VH | −14.4557 | 1.9043 | ||
Non-garlic | VV | −5.7198 | 19.8300 | 14.8938 |
VH | −12.6370 | 15.1894 |
Scenario | Six Parameters | Two Parameters | ||
---|---|---|---|---|
Time (s) | Accuracy (%) | Time (s) | Accuracy (%) | |
1 | 4624.27 | 75.00 | 9.60 | 75.00 |
2 | 4906.27 | 73.33 | 8.63 | 74.64 |
3 | 5164.25 | 74.76 | 9.19 | 74.76 |
Average | 4898.27 | 74.37 | 9.14 | 74.80 |
Scenario | Six Parameters | Two Parameters | ||
---|---|---|---|---|
Time (s) | Accuracy (%) | Time (s) | Accuracy (%) | |
1 | 4478.15 | 78.81 | 9.55 | 78.81 |
2 | 4760.43 | 78.45 | 8.53 | 78.45 |
3 | 5196.42 | 78.10 | 9.11 | 78.69 |
Average | 4811.67 | 78.45 | 9.06 | 78.65 |
Dataset A | Dataset B | |||||
---|---|---|---|---|---|---|
Scenario | p | n_neighbors | Accuracy (%) | p | n_neighbors | Accuracy (%) |
1 | 2 (Euclidean) | 27 | 75.00 | 1 (Manhattan) | 26 | 78.81 |
2 | 1 (Manhattan) | 27 | 74.64 | 2 (Euclidean) | 29 | 78.45 |
3 | 1 (Manhattan) | 29 | 74.76 | 2 (Euclidean) | 28 | 78.69 |
Dataset | Accuracy (%) | ||
---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 3 | |
A | 74.88 | Inf | Inf |
B | 76.31 | Inf | Inf |
Garlic Field | Non-Garlic Field | ||||
---|---|---|---|---|---|
Dataset A | Dataset B | Dataset A | Dataset B | ||
Determinant | Scenario 1 | 3.14 | 3.49 | 75.02 | 79.45 |
Scenario 2 | 5.57 × 10−15 | 6.21 × 10−15 | 6.66 × 10−14 | −6.35 × 10−13 | |
Scenario 3 | 2.95 × 10−34 | 3.01 × 10−34 | 1.08 × 10−29 | 0 |
Method | Time (s) | Accuracy (%) |
---|---|---|
k-nearest neighbor | 9.55 | 78.81 |
Maximum likelihood classification | 0.8 | 76.31 |
Actual Class | Prediction Class | |||
---|---|---|---|---|
Dataset A | Dataset B | |||
Garlic Field | Non-Garlic Field | Garlic Field | Non-Garlic Field | |
Garlic field | 359 | 61 | 374 | 46 |
Non-garlic field | 149 | 271 | 132 | 288 |
Actual Class | Prediction Class | |||
---|---|---|---|---|
Dataset A | Dataset B | |||
Garlic Field | Non-Garlic Field | Garlic Field | Non-Garlic Field | |
Garlic field | 407 | 39 | 371 | 32 |
Non-garlic field | 172 | 222 | 167 | 270 |
Kappa | Accuracy (%) | |||
---|---|---|---|---|
k-NN Algorithm | MLC Algorithm | k-NN Algorithm | MLC Algorithm | |
Dataset A | 0.50 | 0.48 | 75.00 | 74.88 |
Dataset B | 0.58 | 0.53 | 78.81 | 76.31 |
Dataset A | Dataset B | |||
---|---|---|---|---|
Precision (%) | Recall (%) | Precision (%) | Recall (%) | |
Garlic field | 71 | 85 | 74 | 89 |
Non-garlic field | 82 | 65 | 86 | 69 |
Average | 77 | 75 | 80 | 79 |
Dataset A | Dataset B | |||
---|---|---|---|---|
Precision (%) | Recall (%) | Precision (%) | Recall (%) | |
Garlic field | 70 | 91 | 69 | 92 |
Non-garlic field | 85 | 56 | 89 | 62 |
Average | 78 | 74 | 79 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitanggang, I.S.; Rahmani, I.A.; Caesarendra, W.; Agmalaro, M.A.; Annisa, A.; Sobir, S. Garlic Field Classification Using Machine Learning and Statistic Approaches. AgriEngineering 2023, 5, 631-645. https://doi.org/10.3390/agriengineering5010040
Sitanggang IS, Rahmani IA, Caesarendra W, Agmalaro MA, Annisa A, Sobir S. Garlic Field Classification Using Machine Learning and Statistic Approaches. AgriEngineering. 2023; 5(1):631-645. https://doi.org/10.3390/agriengineering5010040
Chicago/Turabian StyleSitanggang, Imas Sukaesih, Intan Aida Rahmani, Wahyu Caesarendra, Muhammad Asyhar Agmalaro, Annisa Annisa, and Sobir Sobir. 2023. "Garlic Field Classification Using Machine Learning and Statistic Approaches" AgriEngineering 5, no. 1: 631-645. https://doi.org/10.3390/agriengineering5010040
APA StyleSitanggang, I. S., Rahmani, I. A., Caesarendra, W., Agmalaro, M. A., Annisa, A., & Sobir, S. (2023). Garlic Field Classification Using Machine Learning and Statistic Approaches. AgriEngineering, 5(1), 631-645. https://doi.org/10.3390/agriengineering5010040