Pesticide and Adjuvant Mixture Impacts on the Physical–Chemical Properties, Droplet Spectrum, and Absorption of Spray Applied in Soybean Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Stability of the Spray Solution
2.2. Physical and Chemical Analyses
2.3. Droplet Spectrum
2.4. Azoxystrobin Absorption
2.5. Statistical Analyses
3. Results and Discussion
3.1. Physical Stability of the Spray Solution
3.2. Physical and Chemical Analyses
3.3. Droplet Spectrum
3.4. Absorption of Azoxystrobin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gazziero, D.L.P. Misturas de agrotóxicos em tanque nas propriedades agrícolas do Brasil. Planta Daninha 2015, 33, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Gandini, E.M.M.; Costa, E.S.P.; Santos, J.B.; Soares, M.A.; Barroso, G.M.; Corrêa, J.M.; Carvalho, A.G.; Zanuncio, J.C. Compatibility of pesticides and/or fertilizers in tank mixtures. J. Clean. Prod. 2020, 268, 122–152. [Google Scholar] [CrossRef]
- Ribeiro, R.P.M.; Costa, L.L.; Leão-Araújo, E.F.; Oliveira, A. Physical-chemical compatibility of fungicide sprays and adjuvants. Sci. Electron. Arch. 2021, 13, 35–41. [Google Scholar] [CrossRef]
- Lydy, M.; Belden, J.; Wheelock, C.; Hammock, B.; Denton, D. Challenges in regulating pesticide mixtures. Ecol. Soc. 2004, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gandolfo, U.D. Droplet Spectrum and Drift in the Spraying of Different Herbicide Formulations. Ph.D. Thesis, Universidade Estadual Paulista, Botucatu, Brazil, 2018. [Google Scholar]
- Santos, F.H.; Santos, L.A.; Faria, C.M.D.R. Translocation of triazoles and strobilurins in the control of soybean powdery mildew. Appl. Res. Agrotech. 2018, 11, 87–92. [Google Scholar] [CrossRef]
- NBR 13875:2014; Agrotóxicos e Afins-Avaliação de Compatibilidade Físico-Química. ABNT-Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2014; pp. 1–12.
- Dopierala, K.; Prochaska, K. The effect of molecular structure on the surface properties of selected quaternary ammonium salts. J. Colloid Interface Sci. 2008, 321, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Cunha, J.P.A.R.; França, J.A.L.; Alvarenga, C.B.; Alves, G.S.; Antuniassi, U.R. Performance of air induction spray nozzle models under different operating conditions. Eng. Agric. 2020, 40, 711–718. [Google Scholar] [CrossRef]
- Silva, A.C.A. Performance of Adjuvants in the Quality of Application and in the Retention and Translocation of Fungicide in Soybean Crop. Ph.D. Thesis, Universidade Estadual Paulista, Botucatu, Brazil, 2013. [Google Scholar]
- Embrapa-Brazilian Agricultural Research Corporation. Sistema Brasileiro de Classificação de Solos, 1st ed.; Embrapa: Brasília, Brazil, 1999; 200p. [Google Scholar]
- Abdelraheem, E.M.H.; Hassan, S.M.; Arief, M.M.H.; Mohammad, S.G. Validation of quantitative method for azoxystrobin residues in green beans and peas. Food Chem. 2015, 182, 246–250. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Oliveira, R.S., Jr.; Biffe, D.F.; Machado, F.G.; Silva, V.F.V. Mecanismos de Ação de Herbicidas. In Matology: Studies on Weeds; Barroso, A.A.M., Murata, A.T., Eds.; Word Factory: Jaboticabal, Brazil, 2021; pp. 170–204. [Google Scholar]
- Moraes, H.M.F.; Costa, J.O.; Pereira, G.A.M.; Souza, W.M.; Silva, A.A.; Paixão, G.P. Physical compatibility and stability of pesticide mixtures at different spray volumes. Planta Daninha 2018, 37, 1–8. [Google Scholar] [CrossRef]
- Maciel, C.D.G.; Guera, N.; Oliveira Neto, A.M.; Poletine, J.P.; Bastos, S.L.W.; Dias, N.M.S. Tensão superficial estática de misturas em tanque de glyphosate + chlorimuron-ethyl isoladas ou associadas com adjuvantes. Planta Daninha 2010, 28, 673–675. [Google Scholar] [CrossRef]
- Avila Neto, R.C. Mixtures, Adjuvants, Water Hardness and Ph Interfere in the Application of Auxin Mimetic Herbicides. Master’s Dissertation, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2021. [Google Scholar]
- Assunção, H.H.; Campos, S.F.B.; Sousa, L.A.; Lemes, E.M.; Zandonadi, C.H.S.; Cunha, J.P.A.R. Adjuvants plus phytosanitary products and the effects on the physical-chemical properties of the spray liquids. Biosci. J. 2019, 35, 1878–1885. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, C.; Chen, Z.; Cao, L.; Huang, Q.; Song, B. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.). Pest Manag. Sci. 2021, 77, 3198–3207. [Google Scholar] [CrossRef] [PubMed]
- Cação, J.E.C.R.; Moreira, B.R.A.; Raetano, C.G.; Carvalho, F.K.; Prado, E.P. Spray retention on coffee leaves associated with type and concentration of adjuvants. Eng. Agríc. 2019, 39, 623–629. [Google Scholar] [CrossRef]
- Asabe-American Society of Agricultural and Biological Engineers. Spray Nozzle Classification by Droplet Spectra; ASAE S572.2; ASABE: St. Joseph, MI, USA, 2018; pp. 1–6. [Google Scholar]
- Kooij, S.; Sijs, R.; Denn, M.M.; Villermaux, E.; Bonn, D. What determines the drop size in sprays? Phys. Rev. X 2018, 8, 031019. [Google Scholar] [CrossRef] [Green Version]
- Landim, T.N.; Cunha, J.P.A.R.; Alves, G.S.; Marques, M.G.; Silva, S.M. Interactions between adjuvants and the fungicide azoxystrobin+benzovindiflupyr in hydraulic spraying. Eng. Agríc. 2019, 39, 600–606. [Google Scholar] [CrossRef]
- Queiroz, M.F.P. Droplet Spectrum and Physical Characteristics of Sprays with Surfactant Adjuvants and the Herbicides Glyphosate and 2,4-d, Alone and in Mixture. Master’s Dissertation, Universidade Estadual Paulista, Botucatu, Brazil, 2018. [Google Scholar]
- Sijs, R.; Bonn, D. The effect of adjuvants on spray droplet size from hydraulic nozzles. Pest Manag. Sci. 2020, 6, 3487–3494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Derksen, R.C.; Krause, C.R. Adjuvant effects on evaporation time and wetted area of droplets on waxy leaves. Trans. Asabe 2010, 53, 13–20. [Google Scholar] [CrossRef]
- Menendez, J.; Camacho, D.; Fernandez-Cerejido, M.; Bastida, F. Effect of tank-mixed blended green adjuvants on glyphosate efficacy in four winter crop weed species. Weed Res. 2011, 51, 344–352. [Google Scholar] [CrossRef]
- Galvão, R.F.; Ecco, M.; Riffel, R.C.; Barbosa, A.P. Uso de diferentes adjuvantes na aplicação de fungicida na cultura da soja. Res. Soc. Dev. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Sundravadana, S.; Alice, D.; Samiyappan, R.; Kuttalam, S. Determination of azoxystrobin residue by UV detection high performance liquid chromatography in mango. J. Braz. Chem. Soc. 2008, 19, 60–63. [Google Scholar] [CrossRef]
Spray Solution | Time (h) | Compatibility | |||
---|---|---|---|---|---|
0 | 2 | 6 | 24 | ||
FG | − | − | − | + | Compatible, under agitation |
GL * | − | − | + | + | Compatible, under agitation |
MO | − | − | − | + | Compatible, under agitation |
PA | + | + | + | + | Compatible, under agitation |
OO | − | − | − | + | Compatible, under agitation |
Spray Solution | pH | Electrical Conductivity (µS cm−1) | Surface Tension (mN m−1) |
---|---|---|---|
FG | 8.22 a | 69.50 d | 46.97 a |
GL | 3.30 d | 1970.00 a | 45.89 a |
MO | 7.57 b | 79.50 d | 42.02 b |
PA | 4.07 c | 132.25 b | 41.35 b |
OO | 7.50 b | 105.00 c | 40.44 b |
Fc | 1692.00 * | 32,557.00 * | 31.79 * |
W | 0.96 | 0.93 | 0.97 |
FLevene | 0.90 | 1.43 | 3.23 |
C.V. (%) | 1.80 | 1.97 | 2.38 |
Spray Solution | VMD (µm) | RA | DV < 100 µm (%) |
---|---|---|---|
FG | 263.81 c | 1.47 b | 7.49 b |
GL | 243.53 b | 1.54 b | 9.56 a |
OM | 250.66 bc | 1.46 b | 7.84 ab |
AP | 237.69 a | 1.32 a | 8.24 ab |
OO | 266.78 c | 1.50 b | 7.65 ab |
Fc | 33.55 * | 6.64 * | 3.30 * |
W | 0.95 | 0.96 | 0.95 |
FLevene | 1.31 | 0.84 | 0.14 |
C.V. (%) | 1.72 | 4.47 | 11.23 |
Spray Solution | Hours after Application (h) | Average | ||
---|---|---|---|---|
0 | 2 | 48 | ||
FG | 0.00 | 67.05 | 78.38 | 48.48 a b |
GL | 0.00 | 58.94 | 51.97 | 36.97 b |
OM | 0.00 | 78.91 | 88.23 | 55.71 a |
AP | 0.00 | 75.66 | 88.62 | 54.76 a |
OO | 0.00 | 82.31 | 84.08 | 55.46 a |
Average | 0.00 B | 72.58 A | 78.25 A | |
FCalda = 5.16 *; FTempo = 255.23 *; FCalda × Time = 1.75 ns | ||||
W = 0.74; FLevene = 7.43 | ||||
C.V. (%) = 24.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, R.M.; Cunha, J.P.A.R.d. Pesticide and Adjuvant Mixture Impacts on the Physical–Chemical Properties, Droplet Spectrum, and Absorption of Spray Applied in Soybean Crop. AgriEngineering 2023, 5, 646-659. https://doi.org/10.3390/agriengineering5010041
Tavares RM, Cunha JPARd. Pesticide and Adjuvant Mixture Impacts on the Physical–Chemical Properties, Droplet Spectrum, and Absorption of Spray Applied in Soybean Crop. AgriEngineering. 2023; 5(1):646-659. https://doi.org/10.3390/agriengineering5010041
Chicago/Turabian StyleTavares, Rafael Marcão, and João Paulo Arantes Rodrigues da Cunha. 2023. "Pesticide and Adjuvant Mixture Impacts on the Physical–Chemical Properties, Droplet Spectrum, and Absorption of Spray Applied in Soybean Crop" AgriEngineering 5, no. 1: 646-659. https://doi.org/10.3390/agriengineering5010041
APA StyleTavares, R. M., & Cunha, J. P. A. R. d. (2023). Pesticide and Adjuvant Mixture Impacts on the Physical–Chemical Properties, Droplet Spectrum, and Absorption of Spray Applied in Soybean Crop. AgriEngineering, 5(1), 646-659. https://doi.org/10.3390/agriengineering5010041