Language Inference Using Elman Networks with Evolutionary Training
Abstract
:1. Introduction
2. Method Description
2.1. Data Encoding–Decoding Process
2.2. Elman Network
2.3. Estimation of Mean Log-Probability
2.4. Training Method
Algorithm 1 Training Elman-Classifiers |
|
3. Implementation
3.1. Hardware Acceleration
3.2. Software Techniques
4. Experiments
4.1. Datasets
4.2. Experimental Results
5. Conclusions
Future Plans
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikolov, T.; Karafiat, M.; Burget, L.; Černockŷ, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of the INTERSPEECH-2010, Chiba, Japan, 26–30 September 2010; pp. 1045–1048. [Google Scholar]
- Farkas, J. Towards classifying full-text using recurrent neural networks. In Proceedings of the 1995 Canadian Conference on Electrical and Computer Engineering, Montreal, QC, Canada, 5–8 September 1995; pp. 511–514. [Google Scholar]
- Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Tang, D.; Qin, B.; Liu, T. Document modeling with gated recurrent neural network for sentiment classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015. [Google Scholar]
- Graves, A.; Schmidhuber, J. Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. In Proceedings of the NIPS’08: 21st International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–11 December 2008; pp. 545–552. [Google Scholar]
- Guler, N.F.; Ubeyli, E.D.; Guler, I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 2005, 29, 506–514. [Google Scholar] [CrossRef]
- Liou, C.-Y.; Huang, J.-C.; Yang, W.-C. Modeling word perception using the Elman network. Neurocomputing 2008, 71, 3150–3157. [Google Scholar] [CrossRef]
- Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv 2016, arXiv:1605.05101. [Google Scholar]
- Arras, L.; Montavon, G.; Müller, K.R.; Samek, W. Explaining recurrent neural network predictions in sentiment analysis. arXiv 2017, arXiv:1706.07206. [Google Scholar]
- Gruslys, A.; Munos, R.; Danihelka, I.; Lanctot, M.; Graves, A. Memory-Efficient Backpropagation Through Time. In Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Chopra, S.; Auli, M.; Rush, A.M. Abstractive sentence summarization with attentive recurrent neural networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 14–17 June 2016. [Google Scholar]
- Jagannatha, A.N.; Yu, H. Bidirectional RNN for medical event detection in electronic health records. In Proceedings of the Conference, Association for Computational Linguistics, North American Chapter, Meeting; NIH Public Access: Bethesda, MD, USA, 2016; Volume 2016. [Google Scholar]
- Chandra, R. Competition and Collaboration in Cooperative Coevolution of Elman Recurrent Neural Networks for Time-Series Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 3123–3136. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, D.; Zheng, Y.; Hou, S. A novel optimized GA-Elman neural network algorithm. Neural Comput. Appl. 2019, 31, 449–459. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, Y.; Chen, J.; Jia, W. Research on using genetic algorithms to optimize Elman neural networks. Neural Comput. Appl. 2013, 23, 293–297. [Google Scholar] [CrossRef]
- Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative Study of CNN and RNN for Natural Language Processingm, guidance for DNN selection. arXiv 2017, arXiv:1702.01923. [Google Scholar]
- Kuen, J.; Wang, Z.; Wang, G. Recurrent Attentional Networks for Saliency Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Liu, H.; Geng, X. Application of GA-DA-Elman Neural Network Algorithm to Urban Air Quality Evaluation. In IOP Conference Series: Materials Science and Engineering; No. 5; IOP Publishing: Bristol, UK, 2020; Volume 768. [Google Scholar]
- Wang, X.; Li, C. Prediction Model of MBR Membrane Flux for Elman Neural Network Based on PSO-GA Hybrid Algorithm. In Proceedings of the 2018 Eighth International Conference on Instrumentation & Measurement, Computer Communication and Control (IMCCC), Harbin, China, 19–21 July 2018. [Google Scholar]
- Dengiz, B.; Altiparmak, F.; Smith, A.E. Local search genetic algorithm for optimal design of reliable networks. IEEE Trans. Evol. Comput. 1997, 1, 179–188. [Google Scholar] [CrossRef]
- El-Mihoub, T.A.; Hopgood, A.A.; Nolle, L.; Battersby, A. Hybrid Genetic Algorithms: A Review. Eng. Lett. 2006, 13, 124–137. [Google Scholar]
- Shibata, K.; Ito, K. Gauss-Sigmoid neural network. In Proceedings of the IJCNN’99, International Joint Conference on Neural Networks, Proceedings (Cat. No. 99CH36339), Washington, DC, USA, 10–16 July 1999; Volume 2. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Novillo, D. OpenMP and automatic parallelization in GCC. In Proceedings of the GCC Developers Summit, Ottawa, ON, Canada, 28–30 June 2006; p. 47. [Google Scholar]
- Antao, S.F.; Bataev, A.; Jacob, A.C.; Bercea, G.T.; Eichenberger, A.E.; Rokos, G.; Martineau, M.; Jin, T.; Ozen, G.; Sura, Z.; et al. Offloading support for OpenMP in Clang and LLVM. In Proceedings of the 2016 Third Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), Salt Lake City, UT, USA, 14 November 2016. [Google Scholar]
- Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in OpenMP; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001. [Google Scholar]
- Bull, J.M. Measuring synchronization and scheduling overheads in OpenMP. In Proceedings of the First European Workshop on OpenMP, Lund, Sweden, 30 September–1 October 1999; Volume 8. [Google Scholar]
- Hogan, R.J. Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans. Math. Softw. 2014, 40, 16. [Google Scholar] [CrossRef]
- Aho, A.V.; van Leeuwen, J. (Eds.) Algorithms for finding patterns in strings. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity; The MIT Press: Cambridge, MA, USA, 1990; pp. 255–300. [Google Scholar]
- Yin, C.; Yau, S.S.T. Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence. J. Theor. Biol. 2007, 247, 687–694. [Google Scholar] [CrossRef] [PubMed]
- NCBI Resource Coordinators. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017, 45, D12. [Google Scholar] [CrossRef] [PubMed]
- Takacsne, N.K. Computerized logP prediction using fragment methods. Acta Pharm. Hung. 1998, 68, 39–48. [Google Scholar] [PubMed]
- Zhong, T.; Hao, Y.L.; Yao, X.; Zhang, S.; Duan, X.C.; Yin, Y.F.; Xu, M.Q.; Guo, Y.; Li, Z.T.; Zheng, X.C.; et al. Effect of XlogP and Hansen solubility parameters on small molecule modified paclitaxel anticancer drug conjugates self-assembled into nanoparticles. Bioconj. Chem. 2018, 29, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.Y.; Potts, C. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013. [Google Scholar]
- Bausch, J. Recurrent quantum neural networks. Adv. Neural Inf. Process. Syst. 2020, 33, 1368–1379. [Google Scholar]
- Manchev, N.; Spratling, M.W. Target Propagation in Recurrent Neural Networks. J. Mach. Learn. Res. 2020, 21, 1–33. [Google Scholar]
DATASET | GA-Elman | GA-Elman + ADAM |
---|---|---|
Regex | 78.42% | 87.75% |
Primes | 62.80% | 68.50% |
Flu | 69.00% | 75.25% |
LogP | 64.13% | 71.63% |
Sentiment | 53.83% | 54.01% |
Mnist | 85.63% | 87.38% |
Dnacvs | 61.78% | 66.50% |
Prop | 66.36% | 80.53% |
DATASET | Non-Optimzed | 2 Threads + SIMD | 8 Threads + SIMD |
---|---|---|---|
Regex | 205 min. | 42 min. (×4.88) | 19.4 min. (×10.56) |
Primes | 162 min. | 31 min. (×5.22) | 14.4 min. (×11.25) |
Prop | 111 min. | 21.2 min. (×5.23) | 10.5 min. (×10.57) |
DATASET | Positive | Negative | Symbols | Av. Length | STDEV Length |
---|---|---|---|---|---|
Regex | 300 | 300 | 6 | 17 | 1.5 |
Primes | 500 | 500 | 2 | 12 | 1.2 |
Flu | 200 | 200 | 4 | 147 | 13.6 |
LogP | 3000 | 3000 | 32 | 12 | 8.6 |
Sentiment | 1480 | 1302 | 28 | 86 | 23.5 |
Mnist | 1000 | 1000 | 2 | 784 | 0.0 |
Dnacvs | 1000 | 1000 | 4 | 55 | 0.0 |
Prop | 90 | 90 | 10 | 22 | 6.3 |
Parameter | Value |
---|---|
Memory size () | 10 |
Chromosomes | 500 |
Generations | 300 |
Elitism | 1 chromosome |
Selection () | 0.9 |
Mutation () | 0.05 |
Local Chromosomes () | 4 |
Local Frequency () | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasopoulos, N.; Tsoulos, I.G.; Dermatas, E.; Karvounis, E. Language Inference Using Elman Networks with Evolutionary Training. Signals 2022, 3, 611-619. https://doi.org/10.3390/signals3030037
Anastasopoulos N, Tsoulos IG, Dermatas E, Karvounis E. Language Inference Using Elman Networks with Evolutionary Training. Signals. 2022; 3(3):611-619. https://doi.org/10.3390/signals3030037
Chicago/Turabian StyleAnastasopoulos, Nikolaos, Ioannis G. Tsoulos, Evangelos Dermatas, and Evangelos Karvounis. 2022. "Language Inference Using Elman Networks with Evolutionary Training" Signals 3, no. 3: 611-619. https://doi.org/10.3390/signals3030037
APA StyleAnastasopoulos, N., Tsoulos, I. G., Dermatas, E., & Karvounis, E. (2022). Language Inference Using Elman Networks with Evolutionary Training. Signals, 3(3), 611-619. https://doi.org/10.3390/signals3030037