Theoretical and Experimental Assessment of Nonlinear Acoustic Effects through an Orifice
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Experimental Setup
3.2. The Transfer Matrix Method
- , where is the acoustic volume velocity fixed by the acoustic source (i.e., the loudspeaker);
- , due to Radiation Impedance, which fixes the values of the ratio between the acoustic pressure and volume velocity at the outlet section of the hole.
3.3. Numerical Simulations
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Ingård’s Considerations on Critical Velocity in Acoustic Orifices
Appendix B. Radiating Piston Model
Appendix C. Assessment of Back Cavity Resonance in a Speaker System
References
- Vainshtein, P. Rayleigh streaming at large Reynolds number and its effect on shear flow. J. Fluid Mech. 1995, 285, 249–264. [Google Scholar] [CrossRef]
- Riley, N. Acoustic streaming. Theor. Comput. Fluid Dyn. 1998, 10, 349–356. [Google Scholar] [CrossRef]
- Di Giulio, E.; Di Meglio, A.; Massarotti, N.; Romano, R.A.; Dragonetti, R. Oriented fibers stacks for thermoacoustic devices. Appl. Energy 2024, 373, 123959. [Google Scholar] [CrossRef]
- Eckert, E.R. Cross transport of energy in fluid streams. WäRme- Stoffübertragung 1987, 21, 73–81. [Google Scholar] [CrossRef]
- Swift, G.W.; Ward, W.C. Simple harmonic analysis of regenerators. J. Thermophys. Heat Transf. 1996, 10, 652–662. [Google Scholar] [CrossRef]
- Di Meglio, A.; Massarotti, N. CFD Modeling of Thermoacoustic Energy Conversion: A Review. Energies 2022, 15, 3806. [Google Scholar] [CrossRef]
- Di Meglio, A.; Massarotti, N.; Rolland, S.; Nithiarasu, P. Analysis of non-linear losses in a parallel plate thermoacoustic stack. Int. J. Numer. Methods Heat Fluid Flow 2024, 34, 353–377. [Google Scholar] [CrossRef]
- Didden, N. On the formation of vortex rings: Rolling-up and production of circulation. Z. Angew. Math. Phys. ZAMP 1979, 30, 101–116. [Google Scholar] [CrossRef]
- Lighthill, S.J. Acoustic streaming. J. Sound Vib. 1978, 61, 391–418. [Google Scholar] [CrossRef]
- Levine, H.; Schwinger, J. On the Radiation of Sound from an Unflanged Circular Pipe. Phys. Rev. 1948, 73, 383. [Google Scholar] [CrossRef]
- Holman, R.; Utturkar, Y.; Mittal, R.; Smith, B.L.; Cattafesta, L. Formation Criterion for Synthetic Jets. AIAAJ 2012, 43, 2110–2116. [Google Scholar] [CrossRef] [PubMed]
- Trávníček, Z.; Broučková, Z.; Kordík, J. Formation Criterion for Axisymmetric Synthetic Jets at High Stokes Numbers. AIAA J. 2012, 50, 2012–2017. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; d’Accadia, M.D.; Vicidomini, M. Integration of photovoltaic panels and solar collectors into a plant producing biomethane for the transport sector: Dynamic simulation and case study. Heliyon 2023, 9, e14681. [Google Scholar] [CrossRef] [PubMed]
- Chiatto, M.; Palumbo, A.; de Luca, L. Design approach to predict synthetic jet formation and resonance amplifications. Exp. Therm. Fluid Sci. 2019, 107, 79–87. [Google Scholar] [CrossRef]
- Utturkar, Y.; Holman, R.; Mittal, R.; Carroll, B.; Sheplak, M.; Cattafesta, L. A jet formation criterion for synthetic jet actuators. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar] [CrossRef]
- Kewalramani, J.A.; Zou, Z.; Marsh, R.W.; Bukiet, B.G.; Meegoda, J.N. Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid. Acoustics 2020, 2, 147–163. [Google Scholar] [CrossRef]
- Komkin, A.; Bykov, A.; Saulkina, O. Evaluation of the Oscillation Velocity in the Neck of the Helmholtz Resonator in Nonlinear Regimes. Acoustics 2022, 4, 564–573. [Google Scholar] [CrossRef]
- Gesteira, L.G.; Uche, J.; Cappiello, F.L.; Cimmino, L. Thermoeconomic Optimization of a Polygeneration System Based on a Solar-Assisted Desiccant Cooling. Sustainability 2023, 15, 1516. [Google Scholar] [CrossRef]
- Mayer, A.P.; Mayer, E.A.; Mayer, M.; Ruile, W.; Chauhan, V.; Forster, T.; Wagner, K.C. FEM Modeling of Electro-Acoustic Nonlinearities in Surface Acoustic Wave Devices: A Methodological Review. Acoustics 2023, 5, 759–787. [Google Scholar] [CrossRef]
- Sergeev, D.; V’yushkina, I.; Eremeev, V.; Stulenkov, A.; Pyalov, K. Investigations into the Approaches of Computational Fluid Dynamics for Flow-Excited Resonator Helmholtz Modeling within Verification on a Laboratory Benchmark. Acoustics 2023, 6, 18–34. [Google Scholar] [CrossRef]
- Férand, M.; Livebardon, T.; Moreau, S.; Sanjosé, M. Numerical Prediction of Far-Field Combustion Noise from Aeronautical Engines. Acoustics 2019, 1, 174–198. [Google Scholar] [CrossRef]
- Geyer, T.F.; Sarradj, E. Self Noise Reduction and Aerodynamics of Airfoils with Porous Trailing Edges. Acoustics 2019, 1, 393–409. [Google Scholar] [CrossRef]
- Horner, J.L.; Hu, Y. Investigation into higher-order mode propagation through orifice plates in circular ducts. Appl. Acoust. 2013, 74, 728–739. [Google Scholar] [CrossRef]
- Gaeta, R.J.; Ahuja, K.K. Effect of orifice shape on acoustic impedance. Int. J. Aeroacoust. 2016, 15, 474–495. [Google Scholar] [CrossRef]
- Han, K.; Ji, Z.; Fan, Y. Extraction and characteristic analysis of the nonlinear acoustic impedance of circular orifices. Phys. Fluids 2023, 35, 093606. [Google Scholar] [CrossRef]
- Komkin, A.; Bykov, A.; Mironov, M. Experimental study of nonlinear acoustic impedance of circular orifices. J. Acoust. Soc. Am. 2020, 148, 1391–1403. [Google Scholar] [CrossRef]
- Ingard, U.; Labate, S. Acoustic Circulation Effects and the Nonlinear Impedance of Orifices. J. Acoust. Soc. Am. 1950, 22, 211–218. [Google Scholar] [CrossRef]
- Ingard, U.; Ising, H. Acoustic Nonlinearity of an Orifice. J. Acoust. Soc. Am. 1967, 42, 6–17. [Google Scholar] [CrossRef]
- Anthony, D.K.; Elliott, S.J. A Comparison of Three Methods of Measuring the Volume Velocity of an Acoustic Source. J. Audio Eng. Soc. 1991, 9, 355–366. [Google Scholar]
- Salava, T. Acoustic Load and Transfer Functions in Rooms at Low Frequencies. J. Audio Eng. Soc. 1988, 36, 763–775. [Google Scholar]
- Jimenéz, N.; Umnova, O.; Groby, J.P. Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media; Springer: Berlin/Heidelberg, Germany, 2021; Volume 143. [Google Scholar] [CrossRef]
- Di Giulio, E.; Nguyen, C.T.; Gloria, A.; Perrot, C.; Dragonetti, R. Three-dimensional cellular structures for viscous and thermal energy control in acoustic and thermoacoustic applications. Int. J. Heat Mass Transf. 2024, 234, 126076. [Google Scholar] [CrossRef]
- Di Giulio, E.; Perrot, C.; Dragonetti, R. Transport parameters for sound propagation in air saturated motionless porous materials: A review. Int. J. Heat Fluid Flow 2024, 108, 109426. [Google Scholar] [CrossRef]
- Fahy, F.; Gardonio, P. Section 3.4: The Baffled Piston. In Sound and Structural Vibration: Radiation, Transmission and Response; Academic Press: Cambridge, MA, USA, 2007; pp. 143–145. [Google Scholar] [CrossRef]
- Di Giulio, E.; Di Meglio, A.; Massarotti, N.; Dragonetti, R. Effective Thermal Conductivity Model for Tetragonal Pin Array Stack. J. Fluid Flow Heat Mass Transf. 2022, 9, 38–42. [Google Scholar] [CrossRef]
- Zieliński, T.G.; Venegas, R.; Perrot, C.; Červenka, M.; Chevillotte, F.; Attenborough, K. Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media. J. Sound Vib. 2020, 483, 115441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giulio, E.; Di Leva, R.; Dragonetti, R. Theoretical and Experimental Assessment of Nonlinear Acoustic Effects through an Orifice. Acoustics 2024, 6, 818-833. https://doi.org/10.3390/acoustics6040046
Di Giulio E, Di Leva R, Dragonetti R. Theoretical and Experimental Assessment of Nonlinear Acoustic Effects through an Orifice. Acoustics. 2024; 6(4):818-833. https://doi.org/10.3390/acoustics6040046
Chicago/Turabian StyleDi Giulio, Elio, Riccardo Di Leva, and Raffaele Dragonetti. 2024. "Theoretical and Experimental Assessment of Nonlinear Acoustic Effects through an Orifice" Acoustics 6, no. 4: 818-833. https://doi.org/10.3390/acoustics6040046
APA StyleDi Giulio, E., Di Leva, R., & Dragonetti, R. (2024). Theoretical and Experimental Assessment of Nonlinear Acoustic Effects through an Orifice. Acoustics, 6(4), 818-833. https://doi.org/10.3390/acoustics6040046