Tunnel Effect for Ultrasonic Waves in Tapered Waveguides
Abstract
:1. Introduction
2. Material and Methods
2.1. Analogy between the Quantum Tunneling Effect and Evanescent, Electromagnetic- or Acoustic-Guided Waves
- Its monochromatic solution leads to evanescent modes within the barrier (where V > E) of the type
2.2. A Possible Definition of Traversal Time: The Phase Time
Problems with Phase Time
2.3. Modes in Ultrasonic Waveguides
2.4. Phase Time for Ultrasonic Waves
3. Results
3.1. Theoretical Results for SH Waves
3.2. Some Experimental Results in the Literature
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rayleigh, L. On the Velocity of Light. Nature 1881, XXIV, 382. [Google Scholar] [CrossRef]
- Rayleigh, L. On the theory of anomalous dispersion. Philos. Mag. 1899, XLVIII, 151. [Google Scholar] [CrossRef]
- Brillouin, L. Wave Propagation and Group Velocity; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Winful, H.G. Group delay, stored energy, and the tunnelling of evanescent electromagnetic waves. Phys. Rev. E 2003, 68, 016615. [Google Scholar] [CrossRef] [PubMed]
- Garrett, C.G.B.; McCumber, D.E. Propagation of a Gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A 1970, 1, 305. [Google Scholar] [CrossRef]
- Chu, S.; Wong, S. Linear pulse propagation in an absorbing medium. Pys. Rev. Lett. 1982, 48, 738. [Google Scholar] [CrossRef]
- Akulshin, A.M.; Barreiro, S.; Lezama, A. Steep Anomalous Dispersion in Coherently Prepared Rb Vapor. Phys. Rev. Lett. 1999, 83, 4277. [Google Scholar] [CrossRef]
- Basov, N.G.; Ambartsumyan, R.V.; Zuev, V.S.; Kryukov, P.G.; Letokhov, V.S. Nonlinear amplification of light pulses. Sov. Phys. JETP 1966, 23, 16. [Google Scholar]
- Chiao, R.Y. Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. Phys. Rev. A 1993, 48, R34. [Google Scholar] [CrossRef]
- Steinberg, A.M.; Chiao, R.Y. Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A 1994, 49, 2071. [Google Scholar] [CrossRef]
- Wang, L.; Liu, N.; Lin, Q.; Zhu, S. Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain. Europhys. Lett. 2002, 60, 834. [Google Scholar] [CrossRef]
- Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W. Envelope evolution of a laser pulse in an active medium. Phys. Rev. E 1995, 51, 4860. [Google Scholar] [CrossRef]
- Steinberg, A.M.; Kwiat, P.G.; Chiao, R.Y. Measurement of the single-photon tunnelling time. Phys. Rev. Lett. 1993, 71, 708–711. [Google Scholar] [CrossRef]
- Hauge, E.H.; Støvneng, J.A. Tunneling times: A critical review. Rev. Mod. Phys. 1989, 61, 917–936. [Google Scholar] [CrossRef]
- Ranfagni, A.; Mugnai, D.; Fabeni, P.; Pazzi, G.P. Delay-time measurements in narrowed waveguides as a test of tunnelling. Appl. Phys. Lett. 1991, 58, 774. [Google Scholar] [CrossRef]
- Enders, A.; Nimtz, G. Evanescent-mode propagation and quantum tunneling. Phys. Rev. E 1993, 48, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Ananthaswamy, A. Quantum Tunneling Is Not Instantaneous, Physicists Show. Scient. Amer. Space Phys. 2020, 3, N.5. [Google Scholar]
- Hartman, T.H. Tunneling of a wave packet. J. Appl. Phys. 1962, 33, 3427. [Google Scholar] [CrossRef]
- Ghatak, A.; Banerjee, S. Temporal delay of a pulse undergoing frustrated total internal reflection. Appl. Opt. 1989, 28, 1960. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, C.; Szipöcs, R.; Stingl, A.; Krausz, F. Tunneling of optical pulses through photonic band gaps. Phys. Rev. Lett. 1994, 73, 2308. [Google Scholar] [CrossRef]
- Setare, M.R.; Ghasemian, K.; Jahani, D. Hartman effect at merging point in graphene under uniaxial strain. Phys. Lett. A 2021, 387, 127004. [Google Scholar] [CrossRef]
- Muga, J.G.; Leavens, C.R. Arrival time in quantum mechanics. Phys. Rep. 2000, 338, 353–438. [Google Scholar] [CrossRef]
- Büttiker, M. Larmor precession and the traversal time for tunnelling. Phys. Rev. B 1983, 27, 6178–6188. [Google Scholar] [CrossRef]
- Winful, H.G. Tunneling time, the Hartman effect and superluminality: A proposed resolution of an old paradox. Phys. Rep. 2006, 436, 1–69. [Google Scholar] [CrossRef]
- Pelat, A.; Gautier, F.; Conlon, S.C.; Semperlotti, F. The acoustic black hole: A review of theory and applications. J. Sound Vib. 2020, 476, 115316. [Google Scholar] [CrossRef]
- Giovanazzi, S. Hawking Radiation in Sonic Black Holes. Phys. Rev. Lett. 2005, 94, 061302. [Google Scholar] [CrossRef] [PubMed]
- Landauer, R.; Martin, T. Barrier interaction time in tunnelling. Rev. Mod. Phys. 1994, 66, 217–227. [Google Scholar] [CrossRef]
- Leavens, C.R.; Aers, G.C. Dwell time and phase times for transmission and reflection. Phys. Rev. B 1989, 39, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Landauer, R.; Martin, T. Time delay in wave packet tunnelling. Solid State Commun. 1992, 84, 115–117. [Google Scholar] [CrossRef]
- Slawinski, M.A. Waves and Rays in Elastic Continua; World Scientific: Singapore, 2010. [Google Scholar]
- Salencon, J. Handbook of Continuum Mechanics: General Concepts, Thermoelasticity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Balcou, P.; Dutriaux, L. Dual Optical Tunneling Times in Frustrated Total Internal Reflection. Phys. Rev. Lett. 1997, 78, 851. [Google Scholar] [CrossRef]
- Mugnai, D.; Ranfagni, A.; Ronchi, L. The queston of tunneling time duration: A new experimental test at microwave scale. Phys. Lett. A 1998, 247, 281. [Google Scholar] [CrossRef]
- Carey, J.J.; Zawadzka, J.; Jaroszynski, D.; Wynne, K. Noncausal Time Response in Frustrated Total Internal Reflection? Phys. Rev. Lett. 2000, 84, 1431. [Google Scholar] [CrossRef] [PubMed]
- Haibel, A.; Nimtz, G. Universal tunnelling time in photonic barrier. Ann. Phys. 2001, 10, 707–712. [Google Scholar] [CrossRef]
- Nimtz, G.; Enders, A.; Spieker, H. Photonic tunneling times. J. Phys. I 1994, 4, 565. [Google Scholar] [CrossRef]
- Enders, A.; Nimtz, G. On superluminal barrier traversal. J. Phys. I 1992, 2, 1693. [Google Scholar] [CrossRef]
- Alippi, A.; Germano, M.; Bettucci, A.; Farrelly, F.A.; Muzio, G. Traversal time of acoustic plate waves through a tunneling section. Phys. Rev. E 1998, 57, 4907–4910. [Google Scholar] [CrossRef]
- Nimtz, G.; Stahlhofen, A.A. Universal tunneling time for all fields. Ann. Phys. 2008, 17, 374–379. [Google Scholar] [CrossRef]
Barrier Length d (mm) | Traversal Phase Time (s) | Traversal Velocity (m/s) |
---|---|---|
3 | 1.0646 | 2818.0 |
8 | 1.3489 | 5930.6 |
13 | 1.3543 | 9598.9 |
18 | 1.3544 | 13,290.2 |
23 | 1.3544 | 16,981.9 |
28 | 1.3544 | 20,673.7 |
Barrier Type | Reference | Traversal Time | 1/Frequency |
---|---|---|---|
FTIR | Balcou and Dutriax [32] | 40 fs | 11.3 fs |
FTIR | Mugnai et al. [33] | 134 ps | 100 ps |
FTIR | Carey et al. [34] | ≈1 ps | 3 ps |
FTIR | Haibel and Nimtz [35] | 117 ps | 120 ps |
Photonic chain | Steinberg et al. [13] | 1.47 fs | 2.3 fs |
Photonic chain | Spielmann et al. [20] | 2.7 fs | 2.7 fs |
Photonic chain | Nimtz et al. [36] | 81 ps | 115 ps |
Photonic waveguide | Enders and Nimtz [37] | 81 ps | 115 ps |
Microwave waveguide | Ranfagni et al. [15] | ≈1 ns | ≈1 ns |
Ultrasonic waveguide | Alippi et al. [38] | 0.5 s | 0.65 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germano, M. Tunnel Effect for Ultrasonic Waves in Tapered Waveguides. Acoustics 2024, 6, 362-373. https://doi.org/10.3390/acoustics6020019
Germano M. Tunnel Effect for Ultrasonic Waves in Tapered Waveguides. Acoustics. 2024; 6(2):362-373. https://doi.org/10.3390/acoustics6020019
Chicago/Turabian StyleGermano, Massimo. 2024. "Tunnel Effect for Ultrasonic Waves in Tapered Waveguides" Acoustics 6, no. 2: 362-373. https://doi.org/10.3390/acoustics6020019
APA StyleGermano, M. (2024). Tunnel Effect for Ultrasonic Waves in Tapered Waveguides. Acoustics, 6(2), 362-373. https://doi.org/10.3390/acoustics6020019